968 resultados para 111506 Toxicology (incl. Clinical Toxicology)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haloperidol ( HP) has been reported to undergo cytochrome P450 (P450)-mediated metabolism to potentially neurotoxic pyridinium metabolites; however, the chemical pathways and specific enzymes involved in these reactions remain to be identified. The aims of the current study were to (i) fully identify the cytochrome P450 enzymes capable of metabolizing HP to the pyridinium metabolite, 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-oxobutylpyridinium (HPP+), and reduced HP (RHP) to 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-hydroxybutylpyridinium (RHPP+); and (ii) determine whether 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-oxobutyl-1,2,3,6-tetrahydropyridine (HPTP) and 4-(4-chlorophenyl)1-( 4-fluorophenyl)-4-hydroxybutyl-1,2,3,6-tetrahydropyridine (RHPTP) were metabolic intermediates in these pathways. In vitro studies were conducted using human liver microsomal preparations and recombinant human cytochrome P450 enzymes (P450s 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19 2D6, 2E1, 3A4, 3A5, and 3A7) expressed in bicistronic format with human NADPH cytochrome P450 reductase in Escherichia coli membranes. Pyridinium formation from HP and RHP was highly correlated across liver preparations, suggesting the same enzyme or enzymes were responsible for both reactions. Cytochrome P450s 3A4, 3A5, and 3A7 were the only recombinant enzymes which demonstrated significant catalytic activity under optimized conditions, although trace levels of activity could be catalyzed by NADPHP450 reductase alone. NADPH-P450 reductase-mediated activity was inhibited by reduced glutathione but not catalase or superoxide dismutase, suggesting O-2-dependent oxidation. No evidence was obtained to support the contention that HPTP and RHPTP are intermediates in these pathways. K-m values for HPP+ (34 +/- 5 mu M) and RHPP+ (64 +/- 4 mu M) formation by recombinant P450 3A4 agreed well with those obtained with human liver microsomes, consistent with P450 3A4 being the major catalyst of pyridinium metabolite formation in human liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To characterize potential mechanism-based inactivation (MBI) of major human drug-metabolizing cytochromes P450 (CYP) by monoamine oxidase (MAO) inhibitors, including the antitubercular drug isoniazid. Human liver microsomal CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities were investigated following co- and preincubation with MAO inhibitors. Inactivation kinetic constants (K-I and k(inact)) were determined where a significant preincubation effect was observed. Spectral studies were conducted to elucidate the mechanisms of inactivation. Hydrazine MAO inhibitors generally exhibited greater inhibition of CYP following preincubation, whereas this was less frequent for the propargylamines, and tranylcypromine and moclobemide. Phenelzine and isoniazid inactivated all CYP but were most potent toward CYP3A and CYP2C19. Respective inactivation kinetic constants (K-I and k(inact)) for isoniazid were 48.6 mu M and 0.042 min(-1) and 79.3 mu M and 0.039 min(-1). Clorgyline was a selective inactivator of CYP1A2 (6.8 mu M and 0.15 min(-1)). Inactivation of CYP was irreversible, consistent with metabolite-intermediate complexation for isoniazid and clorgyline, and haeme destruction for phenelzine. With the exception of phenelzine-mediated CYP3A inactivation, glutathione and superoxide dismutase failed to protect CYP from inactivation by isoniazid and phenelzine. Glutathione partially slowed (17%) the inactivation of CYP1A2 by clorgyline. Alternate substrates or inhibitors generally protected against CYP inactivation. These data are consistent with mechanism-based inactivation of human drug-metabolizing CYP enzymes and suggest that impaired metabolic clearance may contribute to clinical drug-drug interactions with some MAO inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ciguatoxins are cyclic polyether toxins, derived from marine dinoflagellates, which are responsible for the symptoms of ciguatera poisoning. Ingestion of tropical and subtropical fin fish contaminated by ciguatoxins results in an illness characterised by neurological, cardiovascular and gastrointestinal disorders. The pharmacology of ciguatoxins is characterised by their ability to cause persistent activation of voltage-gated sodium channels, to increase neuronal excitability and neurotransmitter release, to impair synaptic vesicle recycling, and to cause cell swelling. It is these effects, in combination with an action to block voltage-gated potassium channels at high doses, which are believed to underlie the complex of symptoms associated with ciguatera. This review examines the sources, structures and pharmacology of ciguatoxins. In particular, attention is placed on their cellular modes of actions to modulate voltage-gated ion channels and other Na+-dependent mechanisms in numerous cell types and to current approaches for detection and treatment of ciguatera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms underlying the swelling of frog red blood cells (RBC), induced by Pacific (P-CTX-1) and Caribbean (C-CTX-1) ciguatoxins (CTXs), were investigated by measuring the length, width and surface of their elliptic shape. P-CTX-1 (0.5 to 5 nM) and C-CTX-1 (1 mu M) induced RBC swelling within 60 min. The CTXs-induced RBC swelling was blocked by apamin (1 mu M) and by Sr2+ (1 mu M). P-CTX-1-induced RBC swelling was prevented and inhibited by H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one(27 mu M), an inhibitor Of Soluble guanylate cyclase (sGC), and NOS blockade by NG methyl-L-arginine (L-NMA; 10 mu M). Cytochalasin D (cytD, 10 mu M) increased RBC surface and mimicked CTX effect but did not prevent the P-CTX-1-induced L-NMA-sensitive extra increase. Calculations revealed that P-CTX-1 and cytD increase RBC total surface envelop and volume. These data strongly suggest that the molecular mechanisms underlying CTXs-induced RBC swelling involve the NO pathway by an activation of the inducible NOS, leading to sGC activation which modulates intracellular cGMP and regulates L-type Ca2+ channels. The resulting increase in intracellular Ca2+ content, in turn, disrupts the actin cytoskeleton, which causes a water influx and triggers a Ca2+-activated K+ current through SK2 isoform channels. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Venomous species have evolved cocktails of bioactive peptides to facilitate prey capture. Given their often exquisite potency and target selectivity, venom peptides provide unique biochemical tools for probing the function of membrane proteins at the molecular level. in the field of the nicotinic acetylcholine receptors (nAChRs), the subtype specific snake alpha-neurotoxins and cone snail alpha-conotoxins have been widely used to probe receptor structure and function in native tissues and recombinant systems. However, only recently has it been possible to generate an accurate molecular view of these nAChR-toxin interactions. Crystal structures of AChBP, a homologue of the nAChR ligand binding domain, have now been solved in complex with alpha-cobratoxin, alpha-conotoxin PnIA and alpha-conotoxin Iml. The orientation of all three toxins in the ACh binding site confirms many of the predictions obtained from mutagenesis and docking simulations on homology models of mammalian nAChR. The precise understanding of the molecular determinants of these complexes is expected to contribute to the development of more selective nAChR modulators. In this commentary, we review the structural data on nAChR-toxin interactions and discuss their implications for the design of novel ligands acting at the nAChR. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diflavo-protein NADPH cytochrome P450 reductase (CPR) is the key electron transfer partner for all drug metabolizing cytochrome P450 enzymes in humans. The protein delivers, consecutively, two electrons to the heme active site of the P450 in a carefully orchestrated process which ultimately leads to the generation of a high valent oxo-heme moiety. Despite its central role in P450 function, no direct electrochemical investigation of the purified protein has been reported. Here we report the first voltammetric study of purified human CPR where responses from both the FMN and FAD cofactors have been identified using both cyclic and square wave voltammetry. For human CPR redox responses at -2 and -278 mV (with a ratio of 1e(-):3e(-)) vs NHE were seen at pH 7.9 while the potentials for rat CPR at pH 8.0 were -20 and -254 mV. All redox responses exhibit a pH dependence of approximately -59 mV/pH unit consistent with proton coupled electron transfer reactions of equal stoichiometry. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The abundance and activity of the prothrombin activator (pseutarin C) within the venom of the Eastern brown snake (Pseudonaja textilis textilis) is the primary determinant of its coagulation potency. Textilinin-1, also in this venom, is a plasmin inhibitor which is thought to exert its toxic effects through the slowing of fibrinolysis. The aim of this report is to determine if there are differences in the potency of the venom from Eastern brown snakes collected from South Australia (SA) compared to those from Queensland (QLD). A concentration of 0.4 mu g/ml venom protein from six QLD specimens clotted citrated plasma in an average time of 21.4 +/- 3.3 s compared to 68.7 +/- 2.4 s for the same amount of SA venom (averaged for six individuals). The more potent procoagulant activity of the QLD venom was measured between 0.4 and 94 mu g/ml venom protein in plasma. The anti-plasmin activity of textilinin was also greater in the venom of the snakes collected from QLD, causing full inhibition of plasmin at approximately 1.88 mu g/ml of venom protein compared to approximately 7.5 mu g/ml for the SA venoms. It is concluded that geographic differentiation of the Eastern brown snakes results in significant differences venom potency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The medical management of those envenomed by snakes, spiders and poisonous fish in Australia featured extensively in the writings 19th century doctors, expeditioners and anthropologists. Against the background of this introduced medical doctrine there already existed an extensive tradition of Aboriginal medical lore; techniques of heat treatment, suction, incision and the application of plant-derived pharmacological substances featured extensively in the management of envenomed victims. The application of a hair-string or grass-string ligature, suctioning of the bite-site and incision were practised in a variety of combinations. Such evolved independently of and pre-dated such practices, which were promoted extensively by immigrant European doctors in the late 19th century. Pacific scientific toxinology began in the 17th century with Don Diego de Prado y Tovar's 1606 account of ciguatera. By the end of the 19th century more than 30 papers and books had defined the natural history of Australian elapid poisoning. The medical management of snakebite in Australia was the focus of great controversy from 1860 to 1900. Dogmatic claims of the supposed antidote efficacy of intravenous ammonia by Professor G.B. Halford, and that of strychnine by Dr. Augustus Mueller, claimed mainstream medical attention. This era of potential iatrogenic disaster and dogma was brought to a conclusion by the objective experiments of Joseph Lauterer and Thomas Lane Bancroft in 1890 in Brisbane; and by those of C.J. Martin (from 1893) and Frank Tidswell (from 1898), both of Sydney. The modern era of Australian toxinology developed as a direct consequence of Calmette's discovery, in Paris in 1894, of immune serum, which was protective against snakebite. We review the key contributors and discoveries of toxinology in colonial Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ciguatera is a global disease caused by the consumption of certain warm-water fish that have accumulated orally effective levels of sodium channel activator toxins (ciguatoxins) through the marine food chain. Symptoms of ciguatera arising from the consumption of ciguateric fish include a range of gastrointestinal, neurological and cardiovascular disturbances. This review examines progress in our understanding of ciguatera from an Australian perspective, especially the laboratory-based research into the problem that was initiated by the late "Bob" Endean at the University of Queensland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study explored urinary cadmium levels among Torres Strait Islanders in response to concerns about potential health impact of high levels of cadmium in some traditional seafood (dugong and turtle liver and kidney). Cadmium levels were measured by inductively coupled mass spectrometry in de-identified urine samples collected during general screening programs in 1996 in two communities with varying dugong and turtle catch statistics. Statistical analysis was performed to identify links between cadmium levels and demographic and background health information. Geometric mean cadmium level among the sample group was 0.83 mu g/g creatinine with 12% containing over 2 mu g/g creatinine. Cadmium level was most strongly associated with age (46% of variation), followed by sex (females > males, 7%) and current smoking status (smokers > non-smokers, 4.7%). Adjusting model conditions suggested further positive associations between cadmium level and diabetes (p = 0.05) and residence in the predicted higher exposure community (p = 0.07). Positive correlations between cadmium and body fat in bivariate analysis were eliminated by control for age and sex. This study found only suggestive differences in cadmium levels between two communities with predicted variation in exposure from traditional foods. However, the data indicate that factors linked with higher cadmium accumulation overlap with those of renal disease risk (i.e. older, females, smokers, diabetes) and suggest that levels may be sufficient to contribute to renal pathology. More direct assessment of exposure and health risks of cadmium to Torres Strait Islanders is needed given the disproportionate level of diet-related disease and the cultural importance of dugong and turtle. This study highlights the need to consider social and cultural variation in exposure and to de. ne "safe'' cadmium levels during diabetes given its rising global prevalence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insects have a much smaller repertoire of voltage-gated calcium (Ca-v) channels than vertebrates. Drosophila melanogaster harbors only a single ortholog of each of the vertebrate Ca(v)1, Ca(v)2, and Ca(v)3 subtypes, although its basal inventory is expanded by alternative splicing and editing of Ca-v channel transcripts. Nevertheless, there appears to be little functional plasticity within this limited panel of insect Ca-v channels, since severe loss-of-function mutations in genes encoding the pore-forming a, subunits in Drosophila are embryonic lethal. Since the primary role of spider venom is to paralyze or kill insect prey, it is not surprising that most, if not all, spider venoms contain peptides that potently modify the activity of these functionally critical insect Ca-v channels. Unfortunately, it has proven difficult to determine the precise ion channel subtypes recognized by these peptide toxins since insect Ca-v channels have significantly different pharmacology to their vertebrate counterparts, and cloned insect Ca-v channels are not available for electrophysiological studies. However, biochemical and genetic studies indicate that some of these spider toxins might ultimately become the defining pharmacology for certain subtypes of insect Ca-v channels. This review focuses on peptidic spider toxins that specifically target insect Ca-v channels. In addition to providing novel molecular tools for ion channel characterization, some of these toxins are being used as leads to develop new methods for controlling insect pests. (c) 2006 Elsevier Ltd. All rights reserved.