456 resultados para fructose


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total organic carbon (TOC), dissolved organic carbon (DOC), total hydrolyzable amino acids (THAA), amino sugars (THAS), and carbohydrates (THCHO) were measured in sediments and interstitial waters from Site 681 (ODP Leg 112). TOC concentrations vary between 0.75% and 8.2% by weight of dry sediment and exhibit a general decrease with depth. DOC concentrations range from 6.1 to 49.5 mg/L, but do not correlate with TOC concentrations in the sediment. Amino compounds (AA and AS) and sugars account for 0.5% to 8% and 0.5% to 3% of TOC, respectively, while amino compounds make up between 2% and 27% of total nitrogen. Dissolved hydrolyzable amino acids (free and combined) and amino sugars were found in concentrations from 3.7 to 150 µM and from 0.1 to 3.7 µM, respectively, and together account for an average of 8.5% of DOC. Dissolved hydrolyzable carbohydrates are in the range of 6 to 49 µM. Amino acid spectra are dominated by glycine, alanine, leucine, and phenylalanine; nonproteinaceous amino acids (gamma-amino butyric acid, beta-alanine, and ornithine) are enriched in the deeper part of the section, gamma-amino butyric acid and beta-alanine are thought to be indicators of continued microbial degradation of TOC. Glycine, serine, glutamic acid, alanine, aspartic acid, and ornithine are the dominating amino compounds in the pore waters. Spectra of carbohydrates in sediments are dominated by glucose, galactose, and mannose, while dissolved sugars are dominated by glucose and fructose. In contrast to the lack of correlation between abundances of bulk TOC and DOC in corresponding interstitial waters, amino compounds and sugars do show some correlation between sediments and pore waters: A depth increase of aspartic acid, serine, glycine, and glutamic acid in the pore waters is reflected in a decrease in the sediment, while an enrichment in valine, iso-leucine, leucine, and phenylalanine in the sediment is mirrored by a decrease in the interstitial waters. The distribution of individual hexoseamines appears to be related to zones of bacterial decomposition of organic matter. Low glucoseamine to galactoseamine ratios coincide with zones of sulfate depletion in the interstitial waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 µatm) or high-CO2 water (1000 µatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen beta chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1 gamma, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the Agrobacterium T-DNA genes, rolB, rolC, orf13, orf8, lso, 6b and several other genes encode weakly homologous proteins with remarkable effects on plant growth. The 6b oncogene induces tumors and enations. In order to study its properties we have used transgenic tobacco plants that carry a dexamethasone-inducible 6b gene, dex-T-6b. Upon induction, dex-T-6b plants develop a large array of morphological modifications, some of which involve abnormal cell expansion. In the present investigation, dex-T-6b-induced expansion was studied in intact leaves and an in vitro leaf disc system. Although T-6b and indole-3-acetic acid (IAA) both induced expansion and were non-additive, T-6b expression did not increase IAA levels, nor did it induce an IAA-responsive gene. Fusicoccin (FC) is known to stimulate expansion by increasing cell wall plasticity. T-6b- and FC-induced expansion were additive at saturating FC concentrations, indicating that T-6b does not act by a similar mechanism to FC. T-6b expression led to higher leaf osmolality values, in contrast to FC, suggesting that the T-6b gene induces expansion by increasing osmolyte concentrations. Metabolite profiling showed that glucose and fructose played a major role in this increase. We infer that T-6b disrupts the osmoregulatory controls that govern cell expansion during development and wound healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

tWatercore distribution inside apple fruit (block or radial), and its incidence (% of tissue) were relatedto the effect of solar radiation inside the canopy as measured by a set of low-cost irradiation sensors.221 samples were harvested in two seasons from the top and the bottom of the canopy and submittedto the non-invasive and non-destructive technique of magnetic resonance imaging (MRI) in order toobtain 20 inner tomography slices from each fruit and analyze the damaged areas using an interactive3D segmentation method. The number of fruit corresponding to each type of damage and the relevantpercentage were calculated and it was found that apples from the top of the tree were mainly of the radialtype (84%) and had more watercore (approx. 5% more) than apples from the bottom (65% radial). From theimage segmentation, the Euler number, a morphometric parameter, was extracted from the segmentedimages and related to the type of watercore symptoms. Apples with block watercore were grouped inEuler numbers between −400 and 400 with a small evolution. For apples with radial development, theEuler number was highly negative: up to −1439. Significant differences were also found regarding sugarcomposition, with higher fructose and total sugar contents in apples from the upper canopy, compared tothose in the lower canopy location. In the seasons studied (2011 and 2012), significantly higher sorbitoland lower sucrose and fructose contents were found in watercore-affected tissue compared to the healthytissue of affected apples and also compared to healthy apples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NMR can be considered a multi-scale multidimensional technology in the sense that it provides both spatial insight at macroscopic (MRI) or microscopic level (relaxometry), together with chemical characterization (HR-MAS). In this study 296 apples (from 4 cultivars) were MRI screened (20 slices per fruit) among which 7 fruits were used for metabolomic study by 1H HR MAS in order to assess various chemical shifts: malic acid, sucrose, glucose, fructose and ethanol. On the first season, tissue samples were taken from the sound and affected apples (near the core, centre and outer part of the mesocarp) belonging to sound and affected locations, while on the second season, tissue samples were focused on the comparison between sound and affected tissue. Beside, MRI and 2D non-destructive relaxometry (on whole fruits, and localized tissue) where performed on 72 and 12 apples respectively in order to compare features at macroscopic (tissue) and microscopic (subcellular) level. HR MAS shows higher content of ?-glucose, ?-glucose, malic acid and aromatic compounds in watercore affected tissues from both seasons, while sound tissue reflects higher sucrose. Microscopic (subcellular) degradation of tissue varies according to disorder development and is in good accordance with macroscopic characterization with MRI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the socioeconomic importance of walnut trees, poor rooting and recalcitrance to in vitro culture have hampered the establishment of high-yield clonal plantations. To improve walnut micropropagation, we introduced several modifications to current methods and evaluated the effects on microshoot performance and acclimatization. Nine selected genotypes (13-year-old trees) of the commercial hybrid Juglans major 209 x J. regia were cultured in vitro on DKW-C medium supplemented with 4.4 µM BA and 50 µM IBA. A protocol was developed that relies on the use of 0.40 mM phloroglucinol during shoot multiplication, 0.20 mM previous root induction, and 6.81 mg/L Fe3+ (FeEDDHA). Moreover, the addition of 83.2 µM glucose during the root expression phase significantly improved plant survival during acclimatization. Phloroglucinol promoted microshoot elongation but inhibited rooting, especially at concentrations above 0.40 mM. Replacing FeEDTA by FeEDDHA diminished chlorotic symptoms and improved rooting, with up to 90% microshoots developing viable roots. Likewise, glucose was more efficient than sucrose or fructose in promoting plant survival. At the proposed working concentrations, neither glucose nor FeEDDHA caused any noticeable deleterious effect on walnut micropropagation. Microscopic analysis revealed the physical continuity between adventitious roots and stem pericycles. Analysis of leaf genomic DNA with eight polymorphic microsatellite markers was supportive of the clonal fidelity and genetic stability of the micropropagated material. Successful clonal plantations (over 5,800 ramets) have been established by applying this protocol.