979 resultados para ultraviolet A radiation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In vitro studies indicate that folate in collected human blood is vulnerable to degradation after exposure to ultraviolet (UV) radiation. This has raised concerns about folate depletion in individuals with high sun exposure. Here, we investigate the association between personal solar UV radiation exposure and serum folate concentration, using a three-week prospective study that was undertaken in females aged 18–47 years in Brisbane, Australia (153 E, 27 S). Following two weeks of supplementation with 500 μg of folic acid daily, the change in serum folate status was assessed over a 7-day period of measured personal sun exposure. Compared to participants with personal UV exposures of <200 Joules per day, participants with personal UV exposures of 200–599 and >600 Joules per day had significantly higher depletion of serum folate (p = 0.015). Multivariable analysis revealed personal UV exposure as the strongest predictor accounting for 20% of the overall change in serum folate (Standardised B = −0.49; t = −3.75; p = <0.01). These data show that increasing solar UV radiation exposures reduces the effectiveness of folic acid supplementation. The consequences of this association may be most pronounced for vulnerable individuals, such as women who are pregnant or of childbearing age with high sun exposures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies have shown that natural ultraviolet (UV) radiation increases secondary products such as phenolics but can significantly inhibit biomass accumulation in lettuce plants. In the work presented here, the effect of UV radiation on phenolic concentration and biomass accumulation was assessed in relation to photosynthetic performance in red and green lettuce types. Lettuce plants in polythene clad tunnels were exposed to either ambient (UV transparent film) or UV-free conditions (UV blocking film). The study tested whether growth reduction in lettuce plants exposed to natural UV radiation is because of inhibition of photosynthesis by direct damage to the photosynthetic apparatus or by internal shading by anthocyanins. Ambient levels of UV radiation did not limit the efficiency of photosynthesis suggesting that phenolic compounds may effectively protect the photosynthetic apparatus. Growth inhibition does, however, occur in red lettuce and could be explained by the high metabolic cost of phenolic compounds for UV protection. From a commercial perspective, UV transparent and UV blocking films offer opportunities because, in combination, they could increase plant quality as well as productivity. Growing plants continuously under a UV blocking film, and then 6 days before the final harvest transferring them to a UV transparent film, showed that high yields and high phytochemical content can be achieved complementarily.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uncertainties in projected ultraviolet (UV) radiation may lead to future increases in UV irradiation of freshwater lakes. Because dissolved organic carbon (DOC) is the main binding phase for mercury (Hg) in freshwater lakes, an increase in DOC photo-oxidation may affect Hg speciation and bioavailability. We quantified the effect of DOC concentration on the rate of abiotic DOC photo-oxidation for five lakes (DOC = 3.27–12.3 mg L−1) in Kejimkujik National Park, Canada. Samples were irradiated with UV-A or UV-B radiation over a 72-h period. UV-B radiation was found to be 2.36 times more efficient at photo-oxidizing DOC than UV-A, with energy-normalized rates of dissolved inorganic carbon (DIC) production ranging from 3.8 × 10−5 to 1.1 × 10−4 mg L−1 J−1 for UV-A, and from 6.0 × 10−5 to 3.1 × 10−4 mg L−1 J−1 for UV-B. Energy normalized rates of DIC production were positively correlated with DOC concentrations. Diffuse integrated attenuation coefficients were quantified in situ (UV-A Kd = 0.056–0.180 J cm−1; UV-B Kd = 0.015–0.165 J cm−1) and a quantitative depth-integrated model for yearly DIC photo-production in each lake was developed. The model predicts that, UV-A produces between 3.2 and 100 times more DIC (1521–2851 mg m−2 year−1) than UV-B radiation (29.17–746.7 mg m−2 year−1). Future increases in UV radiation may increase DIC production and increase Hg bioavailability in low DOC lakes to a greater extent than in high DOC lakes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: Because studies suggest that ultraviolet (UV) radiation modulates the myositis phenotype and Mi-2 autoantigen expression, we conducted a retrospective investigation to determine whether UV radiation may influence the relative prevalence of dermatomyositis and anti-Mi-2 autoantibodies in the US. METHODS: We assessed the relationship between surface UV radiation intensity in the state of residence at the time of onset with the relative prevalence of dermatomyositis and myositis autoantibodies in 380 patients with myositis from referral centers in the US. Myositis autoantibodies were detected by validated immunoprecipitation assays. Surface UV radiation intensity was estimated from UV Index data collected by the US National Weather Service. RESULTS: UV radiation intensity was associated with the relative proportion of patients with dermatomyositis (odds ratio [OR] 2.3, 95% confidence interval [95% CI] 0.9-5.8) and with the proportion of patients expressing anti-Mi-2 autoantibodies (OR 6.0, 95% CI 1.1-34.1). Modeling of these data showed that these associations were confined to women (OR 3.8, 95% CI 1.3-11.0 and OR 17.3, 95% CI 1.8-162.4, respectively) and suggests that sex influences the effects of UV radiation on autoimmune disorders. Significant associations were not observed in men, nor were UV radiation levels related to the presence of antisynthetase or anti-signal recognition particle autoantibodies. CONCLUSION: This first study of the distribution of myositis phenotypes and UV radiation exposure in the US showed that UV radiation may modulate the clinical and immunologic expression of autoimmune disease in women. Further investigation of the mechanisms by which these effects are produced may provide insights into pathogenesis and suggest therapeutic or preventative strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultraviolet (UV) radiation produces immunological alterations in both humans and animals that include a decrease in the delayed type hypersensitivity (DTH) response to complex antigens, and to the induction of the suppressor T cell pathway. Cell-mediated immunity of the type that is altered by UV radiation has been shown to be important in host resistance against microorganisms. My dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans.^ The (DTH) response of C3H mice exposed to ultraviolet (UV) radiation before (afferent arm of DTH) or after (efferent arm of DTH) infection with Candida albicans was markedly and systemically suppressed. Although suppression of both the afferent and efferent phases of DTH were caused by similar wavebands within the ultraviolet region, the dose of UV radiation that suppressed the efferent arm of DTH was 10-fold higher than the dose that suppressed the afferent arm of the DTH reaction.^ The DTH response of C57BL/6 mice was also suppressed by UV radiation; however the suppression was accomplished by exposure to significantly lower doses UV radiation compared to C3H mice. In C57BL/6 mice, the dose of UV radiation that suppressed the afferent phase of DTH was 5-fold higher than the dose that suppressed the efferent phase.^ Exposure of C3H mice to UV radiation before sensitization induced splenic suppressor T cells that upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, the suppression caused by UV irradiation of mice after sensitization was not transferable. Spleen cells from sensitized mice exhibited altered homing patterns in animals that were exposed to UV radiation shortly before receiving cells, suggesting that UV-induced suppression of the efferent arm of DTH could result from an alteration in the distribution of effector cells.^ UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the DTH response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice.^ These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A series of polymers with a comb architecture were prepared where the poly(olefin sulfone) backbone was designed to be highly sensitive to extreme ultraviolet (EUV) radiation, while the well-defined poly(methyl methacrylate) (PMMA) arms were incorporated with the aim of increasing structural stability. It is hypothesized that upon EUV radiation rapid degradation of the polysulfone backbone will occur leaving behind the well-defined PMMA arms. The synthesized polymers were characterised and have had their performance as chain-scission EUV photoresists evaluated. It was found that all materials possess high sensitivity towards degradation by EUV radiation (E0 in the range 4–6 mJ cm−2). Selective degradation of the poly(1-pentene sulfone) backbone relative to the PMMA arms was demonstrated by mass spectrometry headspace analysis during EUV irradiation and by grazing-angle ATR-FTIR. EUV interference patterning has shown that materials are capable of resolving 30 nm 1:1 line:space features. The incorporation of PMMA was found to increase the structural integrity of the patterned features. Thus, it has been shown that terpolymer materials possessing a highly sensitive poly(olefin sulfone) backbone and PMMA arms are able to provide a tuneable materials platform for chain scission EUV resists. These materials have the potential to benefit applications that require nanopattering, such as computer chip manufacture and nano-MEMS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solar ultraviolet (UV) radiation causes a range of skin disorders as well as affecting vision and the immune system. It also inhibits development of plants and animals. UV radiation monitoring is used routinely in some locations in order to alert the population to harmful solar radiation levels. There is ongoing research to develop UV-selective-sensors [1–3]. A personal, inexpensive and simple UV-selective-sensor would be desirable to measure UV intensity exposure. A prototype of such a detector has been developed and evaluated in our laboratory. It comprises a sealed two-electrode photoelectrochemical cell (PEC) based on nanocrystalline TiO2. This abundant semiconducting oxide, which is innocuous and very sta-ble, is the subject of intense study at present due to its application in dye sensitized solar cells (DSSC) [4]. Since TiO2 has a wide band gap (EG = 3.0 eV for rutile and EG = 3.2 eV for anatase), it is inher-ently UV-selective, so that UV filters are not required. This further reduces the cost of the proposed photodetector in comparison with conventional silicon detectors. The PEC is a semiconductor–electrolyte device that generates a photovoltage when it is illuminated and a corresponding photocur-rent if the external circuit is closed. The device does not require external bias, and the short circuit current is generally a linear function of illumination intensity. This greatly simplifies the elec-trical circuit needed when using the PEC as a photodetector. DSSC technology, which is based on a PEC containing nanocrystalline TiO2 sensitized with a ruthenium dye, holds out the promise of solar cells that are significantly cheaper than traditional silicon solar cells. The UV-sensor proposed in this paper relies on the cre-ation of electron–hole pairs in the TiO2 by UV radiation, so that it would be even cheaper than a DSSC since no sensitizer dye is needed. Although TiO2 has been reported as a suitable material for UV sensing [3], to the best of our knowledge, the PEC configuration described in the present paper is a new approach. In the present study, a novel double-layer TiO2 structure has been investigated. Fabrication is based on a simple and inexpensive technique for nanostructured TiO2 deposition using microwave-activated chemical bath deposition (MW-CBD) that has been reported recently [5]. The highly transparent TiO2 (anatase) films obtained are densely packed, and they adhere very well to the transparent oxide (TCO) substrate [6]. These compact layers have been studied as contacting layers in double-layer TiO2 structures for DSSC since improvement of electron extraction at the TiO2–TCO interface is expected [7]. Here we compare devices incorporating a single mesoporous nanocrystalline TiO2 structure with devices based on a double structure in which a MW-CBD film is situated between the TCO and the mesoporous nanocrystalline TiO2 layer. Besides improving electron extraction, this film could also help to block recombination of electrons transferred to the TCO with oxidized species in the electrolyte, as has been reported in the case of DSSC for compact TiO2 films obtained by other deposition tech-niques [8,9]. The two types of UV-selective sensors were characterized in detail. The current voltage characteristics, spectral response, inten-sity dependence of short circuit current and response times were measured and analyzed in order to evaluate the potential of sealed mesoporous TiO2-based photoelectrochemical cells (PEC) as low cost personal UV-photodetectors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple doses of UVA irradiation. This enhancement of adhesiveness might lead to an increase in binding tumor cells to the endothelial lining of vasculature in various internal organs if occurring also in vivo. A further novel observation is that UVA induced both decline in the expression of E-cadherin adhesion molecule and increase in the expression of the N-cadherin adhesion molecule. In addition, a significant decline in homotypic melanoma-melanoma adhesion (clustering) was observed, which might result in the reduction of E-cadherin expression. The aim of the in vivo animal study was to confirm the physiological significance of previously obtained in vitro results and to determine whether UVA radiation might increase melanoma metastasis in vivo. The use of C57BL/6 mice and syngeneic melanoma cell lines B16-F1 and B16-F10 showed that mice, which were i.v. injected with B16-F1 melanoma cells and thereafter exposed to UVA developed significantly more lung metastases when compared with the non-UVA-exposed group. To study the mechanism behind this phenomenon, the direct effect of UVA-induced lung colonization capacity was examined by the in vitro exposure of B16-F1 cells. Alternatively, the UVA-induced immunosuppression, which might be involved in increased melanoma metastasis, was measured by standard contact hypersensitivity assay (CHS). It appears that the UVA-induced increase of metastasis in vivo might be caused by a combination of UVA-induced systemic immunosuppression, and to the lesser extent, it might be caused by the increased adhesiveness of UVA irradiated melanoma cells. Finally, the UVA effect on gene expression in mouse melanoma was determined by a cDNA array, which revealed UVA-induced changes in the 9 differentially expressed genes that are involved in angiogenesis, cell cycle, stress-response, and cell motility. These results suggest that observed genes might be involved in cellular response to UVA and a physiologically relevant UVA dose have previously unknown cellular implications. The novel results presented in this thesis offer evidence that UVA exposure might increase the metastatic potential of the melanoma cells present in blood circulation. Considering the wellknown UVA-induced deleterious effects on cellular level, this study further supports the notion that UVA radiation might have more potential impact on health than previously suggested. The possibility of the pro-metastatic effects of UVA exposure might not be of very high significance for daily exposures. However, UVA effects might gain physiological significance following extensive sunbathing or solaria tanning periods. Whether similar UVA-induced pro-metastatic effects occur in people sunbathing or using solaria remains to be determined. In the light of the results presented in this thesis, the avoidance of solaria use could be well justified.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solar ultraviolet (UV) radiation has a broad range of effects concerning life on Earth. Soon after the mid-1980s, it was recognized that the stratospheric ozone content was declining over large areas of the globe. Because the stratospheric ozone layer protects life on Earth from harmful UV radiation, this lead to concern about possible changes in the UV radiation due to anthropogenic activity. Initiated by this concern, many stations for monitoring of the surface UV radiation were founded in the late 1980s and early 1990s. As a consequence, there is an apparent lack of information on UV radiation further in the past: measurements cannot tell us how the UV radiation levels have changed on time scales of, for instance, several decades. The aim of this thesis was to improve our understanding of past variations in the surface UV radiation by developing techniques for UV reconstruction. Such techniques utilize commonly available meteorological data together with measurements of the total ozone column for reconstructing, or estimating, the amount of UV radiation reaching Earth's surface in the past. Two different techniques for UV reconstruction were developed. Both are based on first calculating the clear-sky UV radiation using a radiative transfer model. The clear-sky value is then corrected for the effect of clouds based on either (i) sunshine duration or (ii) pyranometer measurements. Both techniques account also for the variations in the surface albedo caused by snow, whereas aerosols are included as a typical climatological aerosol load. Using these methods, long time series of reconstructed UV radiation were produced for five European locations, namely Sodankylä and Jokioinen in Finland, Bergen in Norway, Norrköping in Sweden, and Davos in Switzerland. Both UV reconstruction techniques developed in this thesis account for the greater part of the factors affecting the amount of UV radiation reaching the Earth's surface. Thus, they are considered reliable and trustworthy, as suggested also by the good performance of the methods. The pyranometer-based method shows better performance than the sunshine-based method, especially for daily values. For monthly values, the difference between the performances of the methods is smaller, indicating that the sunshine-based method is roughly as good as the pyranometer-based for assessing long-term changes in the surface UV radiation. The time series of reconstructed UV radiation produced in this thesis provide new insight into the past UV radiation climate and how the UV radiation has varied throughout the years. Especially the sunshine-based UV time series, extending back to 1926 and 1950 at Davos and Sodankylä, respectively, also put the recent changes driven by the ozone decline observed over the last few decades into perspective. At Davos, the reconstructed UV over the period 1926-2003 shows considerable variation throughout the entire period, with high values in the mid-1940s, early 1960s, and in the 1990s. Moreover, the variations prior to 1980 were found to be caused primarily by variations in the cloudiness, while the increase of 4.5 %/decade over the period 1979-1999 was supported by both the decline in the total ozone column and changes in the cloudiness. Of the other stations included in this work, both Sodankylä and Norrköping show a clear increase in the UV radiation since the early 1980s (3-4 %/decade), driven primarily by changes in the cloudiness, and to a lesser extent by the diminution of the total ozone. At Jokioinen, a weak increase was found, while at Bergen there was no considerable overall change in the UV radiation level.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biological soil crusts are important in reversing desertification. Ultraviolet radiation, however, may be detrimental for the development of soil crusts. The cyanobacterium Microcoleus vaginatus can be a dominant species occurring in desert soil crusts all over the world. To investigate the physico-chemical consequences of ultraviolet-B radiation on M. vaginatus, eight parameters including the contents of chlorophyll a, reactive oxygen species, malondialdehyde and proline, as well as the activities of photosynthesis, superoxide dismutase (EC 1.15.1.1), peroxiclase (EC 1.11.1.7) and catalase (EC 1.11.1.6) were determined. As shown by the results of determinations, ultraviolet-B radiation caused decreases both in contents of chlorophyll a and in ratios of variable fluorescence over maximum fluorescence that indicate the growth and photosynthesis of M. vaginatus, besides, increases both in levels of reactive oxygen species and in contents of malondialdehyde and proline, while intensified activities of superoxide dismutase, peroxiclase and catalase reflecting the abilities of enzymatic preventive substances to oxidative stress of the treated cells. Therefore, ultraviolet-B radiation affects the growth of M. vaginatus and leads to oxidative stress in cells. Under ultraviolet-B radiation, the treated cells can improve their antioxidant abilities to alleviate oxidative injury. The change trends of reactive oxygen species, superoxide dismutase, peroxiclase and catalase are synchronous. These results suggest that a balance between the antioxidant system and the reactive oxygen species content may be one part of a complex stress response pathway in which multiple environmental factors including ultraviolet-B radiation affect the Survival of M. vaginatus. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of ultraviolet radiation (UVR 280-400 nm) on the germination of Porphyra haitanensis conchospores and on the growth and morphogenesis of the subsequent sporelings were investigated by culturing the released conchospores under natural sunlight from 29 September to 6 October 2005. Germination increased with time and was faster when UV-B was excluded using cut-off filters. There were significant negative effects of UV-B radiation on growth and cell division of sporelings, with decreases up to 18% for thallus length, between 6 and 18% for thallus width, up to 29% for thallus area, and between 6 and 14% for cell size as compared to PAR-controls. UV-A had a significant positive effect on morphogenesis, enhancing the formation of sporelings with cells dividing transversely; on the other hand, UV-B delayed the formation of such sporelings. We also tested the effects of solar UVR on the growth of P. haitanensis juveniles and found no significant effects. Our results indicate that UV-A has an important role in the germination and morphogenesis of the species, but on the other hand, sporelings of P. haitanensis are more sensitive to UV-B radiation than juveniles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic 0, evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

David Johnson, Colin D. Campbell, John A. Lee, Terry V. Callaghan and Dylan Gwynn-Jones (2002). Arctic microorganisms respond more to elevated UV-B radiation than CO2. Nature, 416 (6876) pp.82-83 Sponsorship: NERC / EU / Swedish Academy of Sciences RAE2008

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ultraviolet(UV) radiation at four wavelengths (305, 320, 340 and 380 nm) and photosynthetically active radiation (PAR) were measured from May 1994 to October 1999 using Biospherical UV radiometers. A surface reference sensor located on the roof of the Marine Station at Helgoland recorded values every 5 min, and an equivalent profiling underwater sensor was used for measurements in the sea at approximately monthly intervals. The ratio of 305-nm radiation to PAR varied seasonally, with a 14-fold increase from winter to summer. A much weaker seasonal trend (ca. 1.5-fold) was apparent in the ratio of 320-nm radiation to PAR, but there was no seasonal trend in the ratios of 340- or 380-nm radiation to PAR. The year-to-year variations in 305-nm radiation were also much greater relative to PAR than for the other UV wavelengths, but there was no evidence of a change in the 305 nm:PAR ratio over the study period. The ratios of both 305- and 320-nm radiation to PAR increased from dawn to midday, but those of 340- and 380-nm radiation were almost constant through the day, except shortly before sunrise and after sunset when the proportions of 340- and 380-nm radiation increased. Underwater measurements of PAR and UV suggest that the 1% depth for 305-nm radiation was little more than 1 m, but this estimate is valid only for summer and autumn because, in other seasons, few reliable readings for 305-nm radiation could be obtained underwater, and no attenuation coefficient could be calculated. The 1% depths recorded for the other UV wavelengths in the middle 6 months of the year were 2.0 m for 320 nm, 2.6 m for 340 nm and 4.6 m for 380 nm, compared with 12 m for PAR, but the attenuation of all wavebands increased sharply in October and remained higher until March. An analysis of the influence of sun angle, total column ozone concentration, the proportion of skylight, and cloud cover on the ratio of UV wavelengths to PAR in surface irradiance demonstrated that solar angle has a greater influence than ozone concentration on the irradiance at 305 nm, and that the typical occurrence of ozone

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of UVB radiation on the different developmental stages of the carrageenan-producing red alga Iridaea cordata were evaluated considering: (1) carpospore and discoid germling mortality; (2) growth rates and morphology of young tetrasporophytes; and (3) growth rates and pigment content of field-collected plant fragments. Unialgal cultures were submitted to 0.17, 0.5, or 0.83 W m(-2) of UVB radiation for 3 h per day. The general culture conditions were as follows: 12 h light/12 h dark cycles; irradiance of 55 mu mol photon. per square meter per second; temperature of 9 +/- 1 degrees C; and seawater enriched with Provasoli solution. All UVB irradiation treatments were harmful to carpospores (0.17 W m(-2) = 40.9 +/- 6.9%, 0.5 W m(-2) = 59.8 +/- 13.4%, 0.83 W m(-2) = 49 +/- 17.4% mortality in 3 days). Even though the mortality of all discoid germlings exposed to UVB radiation was unchanged when compared to the control, those germlings exposed to 0.5 and 0.83 W m(-2) treatments became paler and had smaller diameters than those cultivated under control treatment. Decreases in growth rates were observed in young tetrasporophytes, mainly in 0.5 and 0.83 W m(-2) treatments. Similar effects were only observed in fragments of adult plants cultivated at 0.83 W m(-2). Additionally, UVB radiation caused morphological changes in fragments of adult plants in the first week, while the young individuals only displayed this pattern during the third week. The verified morphological alterations in I. cordata could be interpreted as a defense against UVB by reducing the area exposed to radiation. However, a high level of radiation appears to produce irreparable damage, especially under long-term exposure. Our results suggest that the sensitivity to ultraviolet radiation decreases with increased algal age and that the various developmental stages have different responses when exposed to the same doses of UVB radiation.