962 resultados para polyacrylamide gel electrophoresis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most biological diversity on this planet is probably harbored in soils. Understanding the diversity and function of the microbiological component of soil poses great challenges that are being overcome by the application of molecular biological approaches. This review covers one of many approaches being used: separation of polymerase chain reaction (PCR) amplicons using denaturing gradient gel electrophoresis (DGGE). Extraction of nucleic acids directly from soils allows the examination of a community without the limitation posed by cultivation. Polymerase chain reaction provides a means to increase the numbers of a target for its detection on gels. Using the rRNA genes as a target for PCR provides phylogenetic information on populations comprising communities. Fingerprints produced by this method have allowed spatial and temporal comparisons of soil communities within and between locations or among treatments. Numerous samples can be compared because of the rapid high throughput nature of this method. Scientists now have the means to begin addressing complex ecological questions about the spatial, temporal, and nutritional interactions faced by microbes in the soil environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the pattern of BCR involvement in 52 patients with chronic myeloid leukemia by Southern blotting. Of 33 Philadelphia (Ph)-positive patients, 30 had evidence of M-BCR rearrangement, two cases were difficult to interpret, and one clearly lacked evidence of M-BCR rearrangement. Of 19 Ph-negative patients, nine showed M-BCR rearrangement, nine showed no rearrangement, and one result was uncertain. We selected for more detailed study eight patients (three Ph-positive and five Ph-negative). Two of the Ph-positive patients, whose Southern blots were difficult to interpret, had rearranged bands when the BCR gene was studied by pulsed field gel electrophoresis (PFGE). Results of PFGE studies and in situ hybridization to metaphase chromosomes in the third Ph-positive patient, whose DNA clearly lacked M-BCR rearrangement on Southern analysis, were consistent with a breakpoint on chromosome 22 located 3' of all known exons of the BCR gene. However, mRNA studied with the polymerase chain reaction showed evidence of a classical b2-a2 linkage. The findings in this patient may be explained by an unusual genomic breakpoint downstream of the BCR gene associated with long range splicing that excluded all of the 3' BCR exons. Of the five patients with Ph-negative M-BCR non-rearranged CML studied by PFGE for BCR gene rearrangement, none had evidence of rearranged bands. We conclude that PFGE is a valuable adjunct to standard molecular techniques for the study of atypical cases of CML. Occasional patients with Ph-positive CML have breakpoints outside M-BCR. The BCR gene is probably not involved in patients with Ph-negative, M-BCR non-rearranged CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic force microscopy, which is normally used for DNA imaging to gain qualitative results, can also be used for quantitative DNA research, at a single-molecular level. Here, we evaluate the performance of AFM imaging specifically for quantifying supercoiled and relaxed plasmid DNA fractions within a mixture, and compare the results with the bulk material analysis method, gel electrophoresis. The advantages and shortcomings of both methods are discussed in detail. Gel electrophoresis is a quick and well-established quantification method. However, it requires a large amount of DNA, and needs to be carefully calibrated for even slightly different experimental conditions for accurate quantification. AFM imaging is accurate, in that single DNA molecules in different conformations can be seen and counted. When used carefully with necessary correction, both methods provide consistent results. Thus, AFM imaging can be used for DNA quantification, as an alternative to gel electrophoresis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A robust method for fitting to the results of gel electrophoresis assays of damage to plasmid DNA caused by radiation is presented. This method makes use of nonlinear regression to fit analytically derived dose response curves to observations of the supercoiled, open circular and linear plasmid forms simultaneously, allowing for more accurate results than fitting to individual forms. Comparisons with a commonly used analysis method show that while there is a relatively small benefit between the methods for data sets with small errors, the parameters generated by this method remain much more closely distributed around the true value in the face of increasing measurement uncertainties. This allows for parameters to be specified with greater confidence, reflected in a reduction of errors on fitted parameters. On test data sets, fitted uncertainties were reduced by 30%, similar to the improvement that would be offered by moving from triplicate to fivefold repeats (assuming standard errors). This method has been implemented in a popular spreadsheet package and made available online to improve its accessibility. (C) 2011 by Radiation Research Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In studies of radiation-induced DNA fragmentation and repair, analytical models may provide rapid and easy-to-use methods to test simple hypotheses regarding the breakage and rejoining mechanisms involved. The random breakage model, according to which lesions are distributed uniformly and independently of each other along the DNA, has been the model most used to describe spatial distribution of radiation-induced DNA damage. Recently several mechanistic approaches have been proposed that model clustered damage to DNA. In general, such approaches focus on the study of initial radiation-induced DNA damage and repair, without considering the effects of additional (unwanted and unavoidable) fragmentation that may take place during the experimental procedures. While most approaches, including measurement of total DNA mass below a specified value, allow for the occurrence of background experimental damage by means of simple subtractive procedures, a more detailed analysis of DNA fragmentation necessitates a more accurate treatment. We have developed a new, relatively simple model of DNA breakage and the resulting rejoining kinetics of broken fragments. Initial radiation-induced DNA damage is simulated using a clustered breakage approach, with three free parameters: the number of independently located clusters, each containing several DNA double-strand breaks (DSBs), the average number of DSBs within a cluster (multiplicity of the cluster), and the maximum allowed radius within which DSBs belonging to the same cluster are distributed. Random breakage is simulated as a special case of the DSB clustering procedure. When the model is applied to the analysis of DNA fragmentation as measured with pulsed-field gel electrophoresis (PFGE), the hypothesis that DSBs in proximity rejoin at a different rate from that of sparse isolated breaks can be tested, since the kinetics of rejoining of fragments of varying size may be followed by means of computer simulations. The problem of how to account for background damage from experimental handling is also carefully considered. We have shown that the conventional procedure of subtracting the background damage from the experimental data may lead to erroneous conclusions during the analysis of both initial fragmentation and DSB rejoining. Despite its relative simplicity, the method presented allows both the quantitative and qualitative description of radiation-induced DNA fragmentation and subsequent rejoining of double-stranded DNA fragments. (C) 2004 by Radiation Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outer membrane protein (MP) profiles and multilocus enzyme electrophoresis (MEE) analysis were used as tools for differentiating clinical isolates of Proteus spp. Fourteen distinct MP profiles were established by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis in 54 clinical isolates of Proteus spp. (44 strains identified as P. mirabilis and 10 strains identified as P. vulgaris). Forty-one isolates of P. mirabilis and eight isolates of P. vulgaris were grouped within six and three MP profiles, respectively. The remaining P. mirabilis and P. vulgaris isolates had unique profiles. MEE analysis was used to further discriminate among the strains belonging to the same MP groups. Thirty-five distinct electrophoretic types (ETs) were identified among P. mirabilis isolates. The isolates of P. mirabilis from the four most common MP groups were subgrouped into 30 ETs. All of the P. vulgaris strains had unique ETs. The results suggest that upon biochemical classification of Proteus isolates as P. mirabilis or P. vulgaris, further differentiation among strains of the same species can be obtained by the initial determination of MP profiles followed by MEE analysis of strains with identical MPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection of mammalian skeletal muscle with the intracellular parasite Trichinella spiralis results in profound alterations in the host cell and a realignment of host cell gene expression. The role of parasite excretory/secretory (E/S) products in mediating these effects is unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, we have used two-dimensional electrophoresis to analyse the profile of muscle larva excreted/secreted proteins and have coupled this to protein identification using MALDI-TOF mass spectrometry. Interpretation of the peptide mass fingerprint data has relied primarily on the interrogation of a custom-made Trichinella EST database and the NemaGene cluster database for T. spiralis. Our results suggest that this proteomic approach is a useful tool to study protein expression in Trichinella spp. and will contribute to the identification of excreted/secreted proteins.