310 resultados para microRNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNAs' Target Sites (poly-miRTS)-centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)-, and femoral neck (FN)-bone mineral density (BMD). In stage I, 41,102 poly-miRTSs were meta-analyzed in 7 cohorts with a genome-wide significance (GWS) α=0.05/41,102=1.22×10-6. By applying α=5×10-5 (suggestive significance), 11 poly-miRTSs were selected, with FGFRL1 rs4647940 and PRR5 rs3213550 as top signals for FN-BMD (P-value=7.67×10-6 and 1.58×10-5) in gender-combined sample. In stage II in silico replication (two cohorts), FGFRL1 rs4647940 was the only signal marginally replicated for FN-BMD (P-value=5.08×10-3) at α=0.10/11=9.09×10-3. PRR5 rs3213550 was also selected based on biological significance. In stage III de novo genotyping replication (two cohorts), FGFRL1 rs4647940 was the only signal significantly replicated for FN-BMD (P-value=7.55×10-6) at α=0.05/2=0.025 in gender-combined sample. Aggregating three stages, FGFRL1 rs4647940 was the single stage I-discovered and stages II- and III-replicated signal attaining GWS for FN-BMD (P-value=8.87×10-12). Dual-luciferase reporter assays demonstrated that FGFRL1 3' untranslated region harboring rs4647940 appears to be hsa-miR-140-5p's target site. In a zebrafish microinjection experiment, dre-miR-140-5p is shown to exert a dramatic impact on craniofacial skeleton formation. Taken together, we provided functional evidence for a novel FGFRL1 poly-miRTS rs4647940 in a previously known 4p16.3 locus, and experimental and clinical genetics studies have shown both FGFRL1 and hsa-miR-140-5p are important for bone formation. © The Author 2015. Published by Oxford University Press. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Breast cancer (BC) is primarily considered a genetic disorder with a complex interplay of factors including age, gender, ethnicity, family history, personal history and lifestyle with associated hormonal and non-hormonal risk factors. The SNP rs2910164 in miR146a (a G to C polymorphism) was previously associated with increased risk of BC in cases with at least a single copy of the C allele in breast cancer, though results in other cancers and populations have shown significant variation. Methods In this study, we examined this SNP in an Australian sporadic breast cancer population of 160 cases and matched controls, with a replicate population of 403 breast cancer cases using High Resolution Melting. Results Our analysis indicated that the rs2910164 polymorphism is associated with breast cancer risk in both primary and replicate populations (p = 0.03 and 0.0013, respectively). In contrast to the results of familial breast cancer studies, however, we found that the presence of the G allele of rs2910164 is associated with increased cancer risk, with an OR of 1.77 (95% CI 1.40–2.23). Conclusions The microRNA miR146a has a potential role in the development of breast cancer and the effects of its SNPs require further inquiry to determine the nature of their influence on breast tissue and cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

miR-498 is a non-coding RNA located intergenically in 19q13.41. Due to its predicted targeting of several genes involved in control of cellular growth, we examined the expression of miR-498 in colon cancer cell lines and a large cohort of patients with colorectal adenocarcinoma. Two colon cancer cancer cell lines (SW480 and SW48) and one normal colonic epithelial cell line (FHC) were recruited. The expression of miR-498 was tested in these cell lines by using quantitative real-time polymerase chain reaction (qRT-PCR). Tissues from 80 patients with surgical resection of colorectum (60 adenocarcinomas and 20 non-neoplastic tissues) were tested for miR-498 expression by qRT-PCR. In addition, an exogenous miR-498 (mimic) was used to detect the miRNA׳s effects on cell proliferation and cell cycle events in SW480 using MTT calorimetric assay and flow cytometry respectively. The colon cancer cell lines showed reduced expression of miR-498 compared to a normal colonic epithelial cell line. Mimic driven over expression of miR-498 in the SW480 cell line resulted in reduced cell proliferation and increased proportions of G2-M phase cells. In tissues, miR-498 expression was too low to be detected in all colorectal adenocarcinoma compared to non-neoplastic tissues. This suggests that the down regulation of miR-498 in colorectal cancer tissues and the direct suppressive cellular effect noted in cancer cell lines implies that miR-498 has some direct or indirect role in the pathogenesis of colorectal adenocarcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Methamphetamine is a highly addictive central nervous system stimulant with increasing levels of abuse worldwide. Alterations to mRNA and miRNA expression within the mesolimbic system can affect addiction-like behaviors and thus play a role in the development of drug addiction. While many studies have investigated the effects of high-dose methamphetamine, and identified neurotoxic effects, few have looked at the role that persistent changes in gene regulation play following methamphetamine self-administration. Therefore, the aim of this study was to identify RNA changes in the ventral tegmental area following methamphetamine self-administration. We performed microarray analyses on RNA extracted from the ventral tegmental area of Sprague–Dawley rats following methamphetamine self-administration training (2 h/day) and 14 days of abstinence. Results We identified 78 miRNA and 150 mRNA transcripts that were differentially expressed (fdr adjusted p < 0.05, absolute log2 fold change >0.5); these included genes not previously associated with addiction (miR-125a-5p, miR-145 and Foxa1), loci encoding receptors related to drug addiction behaviors and genes with previously recognized roles in addiction such as miR-124, miR-181a, DAT and Ret. Conclusion This study provides insight into the effects of methamphetamine on RNA expression in a key brain region associated with addiction, highlighting the possibility that persistent changes in the expression of genes with both known and previously unknown roles in addiction occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma (GBM) is the most common and aggressive primary brain tumor with very poor patient median survival. To identify a microRNA (miRNA) expression signature that can predict GBM patient survival, we analyzed the miRNA expression data of GBM patients (n = 222) derived from The Cancer Genome Atlas (TCGA) dataset. We divided the patients randomly into training and testing sets with equal number in each group. We identified 10 significant miRNAs using Cox regression analysis on the training set and formulated a risk score based on the expression signature of these miRNAs that segregated the patients into high and low risk groups with significantly different survival times (hazard ratio HR] = 2.4; 95% CI = 1.4-3.8; p < 0.0001). Of these 10 miRNAs, 7 were found to be risky miRNAs and 3 were found to be protective. This signature was independently validated in the testing set (HR = 1.7; 95% CI = 1.1-2.8; p = 0.002). GBM patients with high risk scores had overall poor survival compared to the patients with low risk scores. Overall survival among the entire patient set was 35.0% at 2 years, 21.5% at 3 years, 18.5% at 4 years and 11.8% at 5 years in the low risk group, versus 11.0%, 5.5%, 0.0 and 0.0% respectively in the high risk group (HR = 2.0; 95% CI = 1.4-2.8; p < 0.0001). Cox multivariate analysis with patient age as a covariate on the entire patient set identified risk score based on the 10 miRNA expression signature to be an independent predictor of patient survival (HR = 1.120; 95% CI = 1.04-1.20; p = 0.003). Thus we have identified a miRNA expression signature that can predict GBM patient survival. These findings may have implications in the understanding of gliomagenesis, development of targeted therapy and selection of high risk cancer patients for adjuvant therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic rnycobacteria, including Mycobacterium tuberculosis and Mycobacterium bovis, cause significant morbidity and mortality worldwide. However, the vaccine strain Mycobacterium bovis BCG, unlike virulent strains, triggers extensive apoptosis of infected macrophages, a step necessary for the elicitation of robust protective immunity. We here demonstrate that M. bovis BCG triggers Toll-like receptor 2 (TLR2)-dependent microRNA-155 (miR-155) expression, which involves signaling cross talk among phosphatidylinositol 3-kinase (PI3K), protein kinase C delta (PKC delta), and mitogen-activated protein kinases (MAPKs) and recruitment of NF-kappa B and c-ETS to miR-155 promoter. Genetic and signaling perturbations presented the evidence that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-alpha). Enhanced activation of PKA signaling resulted in the generation of PKA C-alpha; phosphorylation of MSK1, cyclic AMP response element binding protein (CREB), and histone H3; and recruitment of phospho-CREB to the apoptotic gene promoters. The miR-155-triggered activation of caspase-3, BAK1, and cytochrome c translocation involved signaling integration of MAPKs and epigenetic or posttranslational modification of histones or CREB. Importantly, M. bovis BCG infection-induced apoptosis was severely compromised in macrophages derived from miR-155 knockout mice. Gain-of-function and loss-of-function studies validated the requirement of miR-155 for M. bovis BCG's ability to trigger apoptosis. Overall, M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, strongly implicating a novel role for miR-155 in orchestrating cellular reprogramming during immune responses to mycobacterial infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CDC73 gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. It negatively regulates beta-catenin, cyclin D1, and c-MYC. Down-regulation of CDC73 has been reported in breast, renal, and gastric carcinomas. However, the reports regarding the role of CDC73 in oral squamous cell carcinoma (OSCC) are lacking. In this study we show that CDC73 is down-regulated in a majority of OSCC samples. We further show that oncogenic microRNA-155 (miR-155) negatively regulates CDC73 expression. Our experiments show that the dramatic up-regulation of miR-155 is an exclusive mechanism for down-regulation of CDC73 in a panel of human cell lines and a subset of OSCC patient samples in the absence of loss of heterozygosity, mutations, and promoter methylation. Ectopic expression of miR-155 in HEK293 cells dramatically reduced CDC73 levels, enhanced cell viability, and decreased apoptosis. Conversely, the delivery of a miR-155 antagonist (antagomir-155) to KB cells overexpressing miR-155 resulted in increased CDC73 levels, decreased cell viability, increased apoptosis, and marked regression of xenografts in nude mice. Cotransfection of miR-155 with CDC73 in HEK293 cells abrogated its pro-oncogenic effect. Reduced cell proliferation and increased apoptosis of KB cells were dependent on the presence or absence of the 3'-UTR in CDC73. In summary, knockdown of CDC73 expression due to overexpression of miR-155 not only adds a novelty to the list of mechanisms responsible for its down-regulation in different tumors, but the restoration of CDC73 levels by the use of antagomir-155 may also have an important role in therapeutic intervention of cancers, including OSCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-alpha) secretion by macrophages was essential for robust SHH activation, as TNF-alpha(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-alpha or blockade of TNF-alpha receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Genetic variants of NOD2 are linked to inflammatory bowel disease (IBD) etiology. Results: DSS model of colitis in wild-type and inducible nitric-oxide synthase (iNOS) null mice revealed that NOD2-iNOS/NO-responsive microRNA-146a targets NUMB gene facilitating Sonic hedgehog (SHH) signaling. Conclusion: miR-146a-mediated NOD2-SHH signaling regulates gut inflammation. Significance: Identification of novel regulators of IBD provides new insights into pathophysiology and development of new therapy concepts. Inflammatory bowel disease (IBD) is a debilitating chronic inflammatory disorder of the intestine. The interactions between enteric bacteria and genetic susceptibilities are major contributors of IBD etiology. Although genetic variants with loss or gain of NOD2 functions have been linked to IBD susceptibility, the mechanisms coordinating NOD2 downstream signaling, especially in macrophages, during IBD pathogenesis are not precisely identified. Here, studies utilizing the murine dextran sodium sulfate model of colitis revealed the crucial roles for inducible nitric-oxide synthase (iNOS) in regulating pathophysiology of IBDs. Importantly, stimulation of NOD2 failed to activate Sonic hedgehog (SHH) signaling in iNOS null macrophages, implicating NO mediated cross-talk between NOD2 and SHH signaling. NOD2 signaling up-regulated the expression of a NO-responsive microRNA, miR-146a, that targeted NUMB gene and alleviated the suppression of SHH signaling. In vivo and ex vivo studies confirmed the important roles for miR-146a in amplifying inflammatory responses. Collectively, we have identified new roles for miR-146a that established novel cross-talk between NOD2-SHH signaling during gut inflammation. Potential implications of these observations in therapeutics could increase the possibility of defining and developing better regimes to treat IBD pathophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen-related receptor (ESRRA) functions as a transcription factor and regulates the expression of several genes, such as WNT11 and OPN. Up-regulation of ESRRA has been reported in several cancers. However, the mechanism underlying its up-regulation is unclear. Furthermore, the reports regarding the role and regulation of ESRRA in oral squamous cell carcinoma (OSCC) are completely lacking. Here, we show that tumor suppressor miR-125a directly binds to the 3UTR of ESRRA and represses its expression. Overexpression of miR-125a in OSCC cells drastically reduced the level of ESRRA, decreased cell proliferation, and increased apoptosis. Conversely, the delivery of an miR-125a inhibitor to these cells drastically increased the level of ESRRA, increased cell proliferation, and decreased apoptosis. miR-125a-mediated down-regulation of ESRRA impaired anchorage-independent colony formation and invasion of OSCC cells. Reduced cell proliferation and increased apoptosis of OSCC cells were dependent on the presence of the 3UTR in ESRRA. The delivery of an miR-125a mimic to OSCC cells resulted in marked regression of xenografts in nude mice, whereas the delivery of an miR-125a inhibitor to OSCC cells resulted in a significant increase of xenografts and abrogated the tumor suppressor function of miR-125a. We observed an inverse correlation between the expression levels of miR-125a and ESRRA in OSCC samples. In summary, up-regulation of ESRRA due to down-regulation of miR-125a is not only a novel mechanism for its up-regulation in OSCC, but decreasing the level of ESRRA by using a synthetic miR-125a mimic may have an important role in therapeutic intervention of OSCC and other cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-alpha) secretion by macrophages was essential for robust SHH activation, as TNF-alpha(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-alpha or blockade of TNF-alpha receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During inflammation and infection, hematopoietic stem and progenitor cells (HSPCs) are stimulated to proliferate and differentiate into mature immune cells, especially of the myeloid lineage. MicroRNA-146a (miR-146a) is a critical negative regulator of inflammation. Deletion of the gene encoding miR-146a—expressed in all blood cell types—produces effects that appear as dysregulated inflammatory hematopoiesis, leading to a decline in the number and quality of hematopoietic stem cells (HSCs), excessive myeloproliferation, and, ultimately, to exhaustion of the HSCs and hematopoietic neoplasms. Six-week-old deleted mice are normal, with no effect on cell numbers, but by 4 months bone marrow hypercellularity can be seen, and by 8 months marrow exhaustion is becoming evident. The ability of HSCs to replenish the entire hematopoietic repertoire in a myelo-ablated mouse also declines precipitously as miR-146a-deficient mice age. In the absence of miR-146a, LPS-mediated serial inflammatory stimulation accelerates the effects of aging. This chronic inflammatory stress on HSCs in deleted mice involves a molecular axis consisting of upregulation of the signaling protein TRAF6 leading to excessive activity of the transcription factor NF-κB and overproduction of the cytokine IL-6. At the cellular level, transplant studies show that the defects are attributable to both an intrinsic problem in the miR-146a-deficient HSCs and extrinsic effects of miR-146a-deficient lymphocytes and non-hematopoietic cells. This study has identified a microRNA, miR-146a, to be a critical regulator of HSC homeostasis during chronic inflammatory challenge in mice and has provided a molecular connection between chronic inflammation and the development of bone marrow failure and myeloproliferative neoplasms. This may have implications for human hematopoietic malignancies, such as myelodysplastic syndrome, which frequently displays downregulated miR-146a expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs are a class of small non-coding RNAs that negatively regulate gene expression. Several microRNAs have been implicated in altering hematopoietic cell fate decisions. Importantly, deregulation of many microRNAs can lead to deleterious consequences in the hematopoietic system, including the onset of cancer, autoimmunity, or a failure to respond effectively to infection. As such, microRNAs fine-tune the balance between normal hematopoietic output and pathologic consequences. In this work, we explore the role of two microRNAs, miR-132 and miR-125b, in regulating hematopoietic stem cell (HSC) function and B cell development. In particular, we uncover the role of miR-132 in maintaining the appropriate balance between self-renewal, differentiation, and survival in aging HSCs by buffering the expression of a critical transcription factor, FOXO3. By maintain this balance, miR-132 may play a critical role in preventing aging-associated hematopoietic conditions such as autoimmune disease and cancer. We also find that miR-132 plays a critical role in B cell development by targeting a key transcription factor, Sox4, that is responsible for the differentiation of pro-B cells into pre-B cells. We find that miR-132 regulates B cell apoptosis, and by delivering miR-132 to mice that are predisposed to developing B cell cancers, we can inhibit the formation of these cancers and improve the survival of these mice. In addition to miR-132, we uncovered the role of another critical microRNA, miR-125b, that potentiates hematopoietic stem cell function. We found that enforced expression of miR-125b causes an aggressive myeloid leukemia by downregulation of its target Lin28a. Importantly, miR-125b also plays a critical role in inhibiting the formation of pro-B cells. Thus, we have discovered two microRNAs with important roles in regulating normal hematopoiesis, and whose dregulation can lead to deleterious consequences such as cancer in the aging hematopoietic system. Both miR-132 and miR-125b may therefore be targeted for therapeutics to inhibit age-related immune diseases associated with the loss of HSC function and cancer progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La esclerosis múltiple es una enfermedad crónica autoinmune y desmielinizante del sistema nervioso central caracterizada por las lesiones o placas escleróticas que presentan sus pacientes. Estas placas se forman como consecuencia de una desmielinización focal aguda e inflamatoria asociada a una posible pérdida axonal con una posterior remielinización.La función de estas moléculas de RNA, compuestas por 22 nucleótidos aproximadamente, es regular la expresión génica, bien degradando el mRNA, o bien inhibiendo su traducción. Diversos estudios han demostrado que los miRNA, están implicados en muchos procesos biológicos, tales como el desarrollo, diferenciación, regulación de células madre, proliferación y muerte celular, desarrollo y función de las células del sistema inmune, etc. Este trabajo pretende analizar si genes de miRNA podrían estar ligados a la esclerosis múltiple.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

microRNAs(miRNAs)是长约22nt的非编码RNA,它可通过降解mRNA或抑制其翻译来调控基因.本文简要介绍了miRNAs的研究背景,阐述了通过比较近缘物种中非保守的miRNA基因来研究miRNAs分子进化的理由.我们的研究结果证实miRNA基因会受到达尔文正选择的影响,发生快速的进化.这一结果将为我们了解非蛋白编码基因的功能与进化提供崭新的视角.