948 resultados para human genome project


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Phosphorylation by protein kinases is central to cellular signal transduction. Abnormal functioning of kinases has been implicated in developmental disorders and malignancies. Their activity is regulated by second messengers and by the binding of associated domains, which are also influential in translocating the catalytic component to their substrate sites, in mediating interaction with other proteins and carrying out their biological roles. Results: Using sensitive profile-search methods and manual analysis, the human genome has been surveyed for protein kinases. A set of 448 sequences, which show significant similarity to protein kinases and contain the critical residues essential for kinase function, have been selected for an analysis of domain combinations after classifying the kinase domains into subfamilies. The unusual domain combinations in particular kinases suggest their involvement in ubiquitination pathways and alternative modes of regulation for mitogen-activated protein kinase kinases (MAPKKs) and cyclin-dependent kinase (CDK)-like kinases. Previously unexplored kinases have been implicated in osteoblast differentiation and embryonic development on the basis of homology with kinases of known functions from other organisms. Kinases potentially unique to vertebrates are involved in highly evolved processes such as apoptosis, protein translation and tyrosine kinase signaling. In addition to coevolution with the kinase domain, duplication and recruitment of non-catalytic domains is apparent in signaling domains such as the PH, DAG-PE, SH2 and SH3 domains. Conclusions: Expansion of the functional repertoire and possible existence of alternative modes of regulation of certain kinases is suggested by their uncommon domain combinations. Experimental verification of the predicted implications of these kinases could enhance our understanding of their biological roles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human genome project has been recently complemented by whole-genome assessment sequence of 32 mammals and 24 nonmammalian vertebrate species suitable for comparative genomic analyses. Here we anticipate a precipitous drop in costs and increase in sequ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed n-mers (n=3-8) in the local environment of 8,249,446 human SNPs and compared their distribution with that in the genome reference sequences. The results revealed that the short sequences, which contained at least one CpG dinucleotide, occurred

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much of science progresses within the tight boundaries of what is often seen as a "black box". Though familiar to funding agencies, researchers and the academic journals they publish in, it is an entity that outsiders rarely get to peek into. Crowdfunding is a novel means that allows the public to participate in, as well as to support and witness advancements in science. Here we describe our recent crowdfunding efforts to sequence the Azolla genome, a little fern with massive green potential. Crowdfunding is a worthy platform not only for obtaining seed money for exploratory research, but also for engaging directly with the general public as a rewarding form of outreach.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dramatic improvements in DNA sequencing technologies have led to amore than 1,000-fold reduction in sequencing costs over the past five years.Genome-wide research approaches can thus now be applied beyond medicallyrelevant questions to examine the molecular-genetic basis of behavior,development and unique life histories in almost any organism. A first step foran emerging model organism is usually establishing a reference genomesequence. I offer insight gained from the fire ant genome project. First, I detailhow the project came to be and how sequencing, assembly and annotationstrategies were chosen. Subsequently, I describe some of the issues linked toworking with data from recently sequenced genomes. Finally, I discuss anapproach undertaken in a follow-up project based on the fire ant genomesequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequence repeats are an important phenomenon in the human genome, playing important roles in genomic alteration often with phenotypic consequences. The two major types of repeat elements in the human genome are tandem repeats (TRs) including microsatellites, minisatellites, and satellites and transposable elements (TEs). So far, very little has been known about the relationship between these two types of repeats. In this study, we identified TRs that are derived from TEs either based on sequence similarity or overlapping genomic positions. We then analyzed the distribution of these TRs among TE families/subfamilies. Our study shows that at least 7,276 TRs or 23% of all minisatellites/satellites is derived from TEs, contributing ∼0.32% of the human genome. TRs seem to be generated more likely from younger/more active TEs, and once initiated they are expanded with time via local duplication of the repeat units. The currently postulated mechanisms for origin of TRs can explain only 6% of all TE-derived TRs, indicating the presence of one or more yet to be identified mechanisms for the initiation of such repeats. Our result suggests that TEs are contributing to genome expansion and alteration not only by transposition but also by generating tandem repeats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genome sequence varies in numerous ways among individuals although the gross architecture is fixed for all humans. Retrotransposons create one of the most abundant structural variants in the human genome and are divided in many families, with certain members in some families, e.g., L1, Alu, SVA, and HERV-K, remaining active for transposition. Along with other types of genomic variants, retrotransponson-derived variants contribute to the whole spectrum of genome variants in humans. With the advancement of sequencing techniques, many human genomes are being sequenced at the individual level, fueling the comparative research on these variants among individuals. In this thesis, the evolution and functional impact of structural variations is examined primarily focusing on retrotransposons in the context of human evolution. The thesis comprises of three different studies on the topics that are presented in three data chapters. First, the recent evolution of all human specific AluYb members, representing the second most active subfamily of Alus, was tracked to identify their source/master copy using a novel approach. All human-specific AluYb elements from the reference genome were extracted, aligned with one another to construct clusters of similar copies and each cluster was analyzed to generate the evolutionary relationship between the members of the cluster. The approach resulted in identification of one major driver copy of all human specific Yb8 and the source copy of the Yb9 lineage. Three new subfamilies within the AluYb family – Yb8a1, Yb10 and Yb11 were also identified, with Yb11 being the youngest and most polymorphic. Second, an attempt to construct a relation between transposable elements (TEs) and tandem repeats (TRs) was made at a genome-wide scale for the first time. Upon sequence comparison, positional cross-checking and other relevant analyses, it was observed that over 20% of all TRs are derived from TEs. This result established the first connection between these two types of repetitive elements, and extends our appreciation for the impact of TEs on genomes. Furthermore, only 6% of these TE-derived TRs follow the already postulated initiation and expansion mechanisms, suggesting that the others are likely to follow a yet-unidentified mechanism. Third, by taking a combination of multiple computational approaches involving all types of genetic variations published so far including transposable elements, the first whole genome sequence of the most recent common ancestor of all modern human populations that diverged into different populations around 125,000-100,000 years ago was constructed. The study shows that the current reference genome sequence is 8.89 million base pairs larger than our common ancestor’s genome, contributed by a whole spectrum of genetic mechanisms. The use of this ancestral reference genome to facilitate the analysis of personal genomes was demonstrated using an example genome and more insightful recent evolutionary analyses involving the Neanderthal genome. The three data chapters presented in this thesis conclude that the tandem repeats and transposable elements are not two entirely distinctly isolated elements as over 20% TRs are actually derived from TEs. Certain subfamilies of TEs themselves are still evolving with the generation of newer subfamilies. The evolutionary analyses of all TEs along with other genomic variants helped to construct the genome sequence of the most recent common ancestor to all modern human populations which provides a better alternative to human reference genome and can be a useful resource for the study of personal genomics, population genetics, human and primate evolution.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past years have shown an enormous advancement in sequencing and array-based technologies, producing supplementary or alternative views of the genome stored in various formats and databases. Their sheer volume and different data scope pose a challenge to jointly visualize and integrate diverse data types. We present AmalgamScope a new interactive software tool focusing on assisting scientists with the annotation of the human genome and particularly the integration of the annotation files from multiple data types, using gene identifiers and genomic coordinates. Supported platforms include next-generation sequencing and microarray technologies. The available features of AmalgamScope range from the annotation of diverse data types across the human genome to integration of the data based on the annotational information and visualization of the merged files within chromosomal regions or the whole genome. Additionally, users can define custom transcriptome library files for any species and use the file exchanging distant server options of the tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O café é um dos principais produtos agrícolas, sendo considerado o segundo item em importância do comércio internacional de commodities. O gênero Coffea pertence à família Rubiaceae que também inclui outras plantas importantes. Este gênero contém aproximadamente 100 espécies, mas a produção comercial é baseada somente em duas espécies, Coffea arabica e Coffea canephora, que representam aproximadamente 70 % e 30 % do mercado total de café, respectivamente. O Projeto Genoma Café Brasileiro foi desenvolvido com o objetivo de disponibilizar os modernos recursos da genômica à comunidade científica e aos diferentes segmentos da cadeia produtiva do café. Para isso, foram seqüenciados 214.964 clones escolhidos aleatoriamente de 37 bibliotecas de cDNA de C. arabica, C. canephora e C. racemosa representando estádios específicos do desenvolvimento de células e de tecidos do cafeeiro, resultando em 130.792, 12.381 e 10.566 seqüências de cada espécie, respectivamente, após processo de trimagem. Os ESTs foram agrupados em 17.982 contigs e em 32.155 singletons. A comparação destas seqüências pelo programa BLAST revelou que 22 % não tiveram nenhuma similaridade significativa às seqüências no banco de dados do National Center for Biotechnology Information (de função conhecida ou desconhecida). A base de dados de ESTs do cafeeiro resultou na identificação de cerca de 33.000 unigenes diferentes. Os resultados de anotação das seqüências foram armazenados em base de dados online em http://www.lge.ibi.unicamp.br/cafe. Os recursos desenvolvidos por este projeto disponibilizam ferramentas genéticas e genômicas que podem ser decisivas para a sustentabilidade, a competitividade e a futura viabilidade da agroindústria cafeeira nos mercados interno e externo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human buccal micronucleus cytome assay (BMCyt) is one of the most widely used techniques to measure genetic damage in human population studies. Reducing protocol variability, assessing the role of confounders, and estimating a range of reference values are research priorities that will be addressed by the HUMNXL, collaborative study. The HUMNXL, project evaluates the impact of host factors, occupation, life-style, disease status, and protocol features on the occurrence of MN in exfoliated buccal cells. In addition, the study will provide a range of reference values for all cytome endpoints. A database of 5424 subjects with buccal MN values obtained from 30 laboratories worldwide was compiled and analyzed to investigate the influence of several conditions affecting MN frequency. Random effects models were mostly used to investigate MN predictors. The estimated spontaneous MN frequency was 0.74 parts per thousand (95% CI 0.52-1.05). Only staining among technical features influenced MN frequency, with an abnormal increase for non-DNA-specific stains. No effect of gender was evident, while the trend for age was highly significant (p < 0.001). Most occupational exposures and a diagnosis of cancer significantly increased MN and other endpoints frequencies. MN frequency increased in heavy smoking (>= 40 cig/day. FR = 1.37:95% CI 1.03-.82) and decreased with daily fruit consumption (FR = 0.68; 95% CI 0.50-0.91). The results of the HUMNXL, project identified priorities for validation studies, increased the basic knowledge of the assay, and contributed to the creation of a laboratory network which in perspective may allow the evaluation of disease risk associated with MN frequency. (C) 2011 Elsevier B.V. All rights reserved.