38 resultados para deoxyglucose


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: We have previously shown in humans that local infusion of a nitric oxide synthase (NOS) inhibitor into the femoral artery attenuates the increase in leg glucose uptake during exercise without influencing total leg blood flow. However, rodent studies examining the effect of NOS inhibition on contraction-stimulated skeletal muscle glucose uptake have yielded contradictory results. This study examined the effect of local infusion of an NOS inhibitor on skeletal muscle glucose uptake (2-deoxyglucose) and capillary blood flow (contrast-enhanced ultrasound) during in situ contractions in rats.

RESEARCH DESIGN AND METHODS: Male hooded Wistar rats were anesthetized and one hindleg electrically stimulated to contract (2 Hz, 0.1 ms) for 30 min while the other leg rested. After 10 min, the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) (arterial concentration of 5 µmol/l) or saline was infused into the epigastric artery of the contracting leg.

RESULTS: Local NOS inhibition had no effect on blood pressure, heart rate, or muscle contraction force. Contractions increased (P < 0.05) skeletal muscle NOS activity, and this was prevented by L-NAME infusion. NOS inhibition caused a modest significant (P < 0.05) attenuation of the increase in femoral blood flow during contractions, but importantly there was no effect on capillary recruitment. NOS inhibition attenuated (P < 0.05) the increase in contraction-stimulated skeletal muscle glucose uptake by ~35%, without affecting AMP-activated protein kinase (AMPK) activation.

CONCLUSIONS: NOS inhibition attenuated increases in skeletal muscle glucose uptake during contraction without influencing capillary recruitment, suggesting that NO is critical for part of the normal increase in skeletal muscle fiber glucose uptake during contraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperglycemia is a defining feature of Type 1 and 2 diabetes. Hyperglycemia also causes insulin resistance, and our group (Kraegen EW, Saha AK, Preston E, Wilks D, Hoy AJ, Cooney GJ, Ruderman NB. Am J Physiol Endocrinol Metab Endocrinol Metab 290: E471–E479, 2006) has recently demonstrated that hyperglycemia generated by glucose infusion results in insulin resistance after 5 h but not after 3 h. The aim of this study was to investigate possible mechanism(s) by which glucose infusion causes insulin resistance in skeletal muscle and in particular to examine whether this was associated with changes in insulin signaling. Hyperglycemia (∼10 mM) was produced in cannulated male Wistar rats for up to 5 h. The glucose infusion rate required to maintain this hyperglycemia progressively lessened over 5 h (by 25%, P < 0.0001 at 5 h) without any alteration in plasma insulin levels consistent with the development of insulin resistance. Muscle glucose uptake in vivo (44%; P < 0.05) and glycogen synthesis rate (52%; P < 0.001) were reduced after 5 h compared with after 3 h of infusion. Despite these changes, there was no decrease in the phosphorylation state of multiple insulin signaling intermediates [insulin receptor, Akt, AS160 (Akt substrate of 160 kDa), glycogen synthase kinase-3β] over the same time course. In isolated soleus strips taken from control or 1- or 5-h glucose-infused animals, insulin-stimulated 2-deoxyglucose transport was similar, but glycogen synthesis was significantly reduced in the 5-h muscle sample (68% vs. 1-h sample; P < 0.001). These results suggest that the reduced muscle glucose uptake in rats after 5 h of acute hyperglycemia is due more to the metabolic effects of excess glycogen storage than to a defect in insulin signaling or glucose transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to develop an experimental protocol for endurance swimming periodization training in rats similar to high performance training in humans, and compare it to continuous training. Three groups of male Wistar rats (90 days old) were allocated to Sedentary Control (SC); Continuous Training (CT); and Periodized Experimental Training (PET) groups. PET and CT trained 5 days/week, over five weeks, CT: continuous training supporting a 5% body mass (bm) load for 40 min/day; PET: training subdivided into basic, specific, and taper periods, with overload changed daily (volume-intensity, continuous, and interval training). Total training overload was quantified (% bm X exercise time in training session) and equalized for the two trained groups. Glucose ([ 3H]2-deoxyglucose) uptake, incorporation to glycogen (synthesis), glucose oxidation (CO 2 production), and lactate production from [U- 14C]glucose by soleus muscle strips incubated in presence of insulin (100μU/mL) were evaluated 48h after the last training session. The load equivalent at 5.5mM blood lactate concentration ([La-5.5]) was determined in the incremental test. Lactate production was similar in all groups. PET presented higher glucose uptake (59%) than SC, and higher glycogen synthesis (51 and 22%) and glucose oxidation (147 and 178%) than SC and CT, respectively. CT presented higher glycogen synthesis rates (23%) than SC. Load [La-5.5] was similar between trained groups and higher than SC. PET presented higher values for glucose metabolism than CT and SC. These results open up new perspectives for studying training methods used in high performance sport through swimming exercise in rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-zeta; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-zeta, and RNA interference (RNAi)-mediated knockdown of PKC-zeta. In mice, muscle-specific aPKC (PKC-lambda) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[(3)H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: [(18)F]fluoro-deoxyglucose positron-emission-tomography (FDG-PET) detects metabolic activity in alveolar echinococcosis (AE). The slow changes in metabolic and morphological characteristics require long-term follow-up of patients. This is the first study to evaluate metabolic activity over may years, hereby assessing the utility of FDG-PET for the evaluation of disease progression and response to treatment. PATIENTS, METHODS: 15 patients received a follow-up FDG-PET combined with computed tomography (integrated PET/CT) with a median of 6.5 years after the first PET in 1999. Number and location of enhanced metabolic activity in the area of AE lesions was determined. Quantification of intensity of metabolic activity was assessed by calculation of mean standardized uptake values. RESULTS: AE lesions in 11/15 patients had been metabolically inactive initially, but only two showed permanent inactivity over the course of 81 months. Interestingly, in two patients metabolic activity was newly detected after 80 and 82 months. Benzimidazole treatment was intermittently discontinued in seven cases. Persisting activity at FDG-PET demanded continued benzimidazole treatment in four patients. Neither treatment duration, lesional size, calcifications nor regressive changes correlated with metabolic activity. CONCLUSION: Treatment responses are heterogeneous and vary from progressive disease despite treatment to long-term inactive disease with discontinued treatment. Lack of metabolic activity indicates suppressed parasite activity and is not equivalent to parasite death. However, metabolic activity may remain suppressed for years, allowing for temporary treatment discontinuation. Relapses are reliably detected with PET and restarting benzimidazole treatment prevents parasite expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of insulin with bovine aorta endothelial (BAE) cells has been studied to determine the effect of insulin on endothelial cells, and investigate the function of the insulin receptor in this cell type. BAE cell insulin receptor is similiar to insulin receptor in other cell types in the time to attain equilibrium binding, its physical properties in a solubilized assay system and affinity for insulin in the low nanomolar range. However, BAE cell insulin receptor has unusual properties in its interaction with insulin at 4$\sp\circ$C that include: (1) the inability to completely dissociate prebound $\sp{125}$I-insulin by dilution with excess insulin or acid rinse treatment, indicating that binding is not completely reversible (2) the inability to remove prebound insulin with trypsin and other proteases (3) the implication of disulfide complex formation during binding (4) the inability of pretreatment with trypsin to lower cell surface binding capacity and (5) the suppression of insulin binding by bacitracin. Interactions of insulin with the receptor at 37$\sp\circ$C showed that (1) BAE cells degrade insulin, but not as extensively as other cell types, and (2) an unusual biphasic interaction of insulin with the BAE cells is observed which is indicative of some regulatory mechanism which modulates binding affinity. Functional characterization of the BAE cell insulin receptor revealed that insulin-induced downregulation and phosphorylation of the receptor was observed, and the extent of these processes were comparable to that demonstrated in non-endothelial cell types. However, in contrast to other cell types, insulin did not stimulate deoxyglucose uptake in BAE cells. We were unable to confirm the receptor-mediated transport of insulin by the receptor across the endothelial cell monolayer as reported by a previous investigator. We could not demonstrate a role for the receptor to promote acute intracellular accumulation of insulin as postulated by several investigators. Thus, while BAE cell insulin receptor has many properties that are similiar to those in other cell types, it is distinctly different in its nondissociable binding at 4$\sp\circ$C, its interaction with insulin at 37$\sp\circ$C, and its functional role in the BAE cell. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The association between increases in cerebral glucose metabolism and the development of acidosis is largely inferential, based on reports linking hyperglycemia with poor neurological outcome, lactate accumulation, and the severity of acidosis. We measured local cerebral metabolic rate for glucose (lCMRglc) and an index of brain pH--the acid-base index (ABI)--concurrently and characterized their interaction in a model of focal cerebral ischemia in rats in a double-label autoradiographic study, using ($\sp{14}$C) 2-deoxyglucose and ($\sp{14}$C) dimethyloxazolidinedione. Computer-assisted digitization and analysis permitted the simultaneous quantification of the two variables on a pixel-by-pixel basis in the same brain slices. Hemispheres ipsilateral to tamponade-induced middle cerebral occlusion showed areas of normal, depressed and elevated glucose metabolic rate (as defined by an interhemispheric asymmetry index) after two hours of ischemia. Regions of normal glucose metabolic rate showed normal ABI (pH $\pm$ SD = 6.97 $\pm$ 0.09), regions of depressed lCMRglc showed severe acidosis (6.69 $\pm$ 0.14), and regions of elevated lCMRglc showed moderate acidosis (6.88 $\pm$ 0.10), all significantly different at the.00125 level as shown by analysis of variance. Moderate acidosis in regions of increased lCMRglc suggests that anaerobic glycolysis causes excess protons to be generated by the uncoupling of ATP synthesis and hydrolysis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cerebral networks are complex sets of connections that resemble a ladder-like web of multiple parallel feedforward, lateral, and feedback connections. This static anatomical description has been pivotal in guiding our understanding of signal processing within cerebral networks. However, measures on both magnitude and functional significance of connections are extremely limited. Here, we compare the anatomically defined strengths of a set of cerebral pathways emerging from the visual middle suprasylvian (MS) cortex of the cat with measures of the functional impact the same region has over distant sites. These functional measures were obtained by analyzing the local and distant effects of MS cooling deactivation on deoxyglucose uptake. Relative to major efferent projections from MS cortex that have a strong influence, projections to early visual processing stages have weaker functional influences than predicted from the anatomy. For higher processing stages, the converse holds: projections from MS cortex have stronger functional influence than predicted from the anatomy. We conclude that these and future functional measures, obtained using the same combination of techniques, will furnish fundamental, new information that complements and extends current models of static cerebral networks, and lead to more realistic models of cerebral network function and component interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From mutants of Escherichia coli unable to utilize fructose via the phosphoenolpyruvate/glycose phosphotransferase system (PTS), further mutants were selected that grow on fructose as the sole carbon source, albeit with relatively low affinity for that hexose (Km for growth ≈8 mM but with Vmax for generation time ≈1 h 10 min); the fructose thus taken into the cells is phosphorylated to fructose 6-phosphate by ATP and a cytosolic fructo(manno)kinase (Mak). The gene effecting the translocation of fructose was identified by Hfr-mediated conjugations and by phage-mediated transduction as specifying an isoform of the membrane-spanning enzyme IIGlc of the PTS, which we designate ptsG-F. Exconjugants that had acquired ptsG+ from Hfr strains used for mapping (designated ptsG-I) grew very poorly on fructose (Vmax ≈7 h 20 min), even though they were rich in Mak activity. A mutant of E. coli also rich in Mak but unable to grow on glucose by virtue of transposon-mediated inactivations both of ptsG and of the genes specifying enzyme IIMan (manXYZ) was restored to growth on glucose by plasmids containing either ptsG-F or ptsG-I, but only the former restored growth on fructose. Sequence analysis showed that the difference between these two forms of ptsG, which was reflected also by differences in the rates at which they translocated mannose and glucose analogs such as methyl α-glucoside and 2-deoxyglucose, resided in a substitution of G in ptsG-I by T in ptsG-F in the first position of codon 12, with consequent replacement of valine by phenylalanine in the deduced amino acid sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low concentrations of the glucose (Glc) analog mannose (Man) inhibit germination of Arabidopsis seeds. Man is phosphorylated by hexokinase (HXK), but the absence of germination was not due to ATP or phosphate depletion. The addition of metabolizable sugars reversed the Man-mediated inhibition of germination. Carbohydrate-mediated regulation of gene expression involving a HXK-mediated pathway is known to be activated by Glc, Man, and other monosaccharides. Therefore, we investigated whether Man blocks germination through this system. By testing other Glc analogs, we found that 2-deoxyglucose, which, like Man, is phosphorylated by HXK, also blocked germination; no inhibition was observed with 6-deoxyglucose or 3-O-methylglucose, which are not substrates for HXK. Since these latter two sugars are taken up at a rate similar to that of Man, uptake is unlikely to be involved in the inhibition of germination. Furthermore, we show that mannoheptulose, a specific HXK inhibitor, restores germination of seeds grown in the presence of Man. We conclude that HXK is involved in the Man-mediated repression of germination of Arabidopsis seeds, possibly via energy depletion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathogenesis of simian immunodeficiency virus (SIV) infection in rhesus macaques begins with acute viremia and then progresses to a distributed infection in the solid lymphoid tissues, which is followed by a process of cellular destruction leading to terminal disease and death. Blood and tissue specimens show the progress of infection at the cellular level but do not reveal the pattern of infection and host responses occurring throughout the body. The purpose of this investigation was to determine whether positron emission tomography (PET) imaging with intravenous 2-18F-2-deoxyglucose (FDG) could identify activated lymphoid tissues in a living animal and whether this pattern would reflect the extent of SIV infection. PET images from SIV-infected animals were distinguishable from uninfected controls and revealed a pattern consistent with widespread lymphoid tissue activation. Significant FDG accumulation in colon along with mesenteric and ileocaecal lymph nodes was found in SIV infection, especially during terminal disease stages. Areas of elevated FDG uptake in the PET images were correlated with productive SIV infection using in situ hybridization as a test for virus replication. PET-FDG images of SIV-infected animals correlated sites of virus replication with high FDG accumulation. These data show that the method can be used to evaluate the distribution and activity of infected tissues in a living animal without biopsy. Fewer tissues had high FDG uptake in terminal animals than midstage animals, and both were clearly distinguishable from uninfected animal scans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multicellular obligately photoautotrophic alga Volvox is composed of only two types of cells, somatic and reproductive. Therefore, Volvox provides the simplest model system for the study of multicellularity. Metabolic labeling experiments using radioactive precursors are crucial for the detection of stage- and cell-type-specific proteins, glycoproteins, lipids, and carbohydrates. However, wild-type Volvox lacks import systems for sugars or amino acids. To circumvent this problem, the hexose/H+ symporter (HUP1) gene from the unicellular alga Chlorella was placed under the control of the constitutive Volvox beta-tubulin promoter. The corresponding transgenic Volvox strain synthesized the sugar transporter in a functional state and was able to efficiently incorporate 14C from labeled glucose or glucosamine. Sensitivity toward the toxic glucose/mannose analogue 2-deoxy-glucose increased by orders of magnitude in transformants. Thus we report the successful transformation of Volvox with a gene of heterologous origin. The chimeric gene may be selected for in either a positive or a negative manner, because transformants exhibit both prolonged survival in the dark in the presence of glucose and greatly increased sensitivity to the toxic sugar 2-deoxyglucose. The former trait may make the gene useful as a dominant selectable marker for use in transformation studies, whereas the latter trait may make it useful in development of a gene-targeting system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevation in the rate of glucose transport in polyoma virus-infected mouse fibroblasts was dependent upon phosphatidylinositol 3-kinase (PI 3-kinase; EC 2.7.1.137) binding to complexes of middle tumor antigen (middle T) and pp60c-src. Wild-type polyoma virus infection led to a 3-fold increase in the rate of 2-deoxyglucose (2DG) uptake, whereas a weakly transforming polyoma virus mutant that encodes a middle T capable of activating pp60c-src but unable to promote binding of PI 3-kinase induced little or no change in the rate of 2DG transport. Another transformation-defective mutant encoding a middle T that retains functional binding of both pp60c-src and PI 3-kinase but is incapable of binding Shc (a protein involved in activation of Ras) induced 2DG transport to wild-type levels. Wortmannin (< or = 100 nM), a known inhibitor of PI 3-kinase, blocked elevation of glucose transport in wild-type virus-infected cells. In contrast to serum stimulation, which led to increased levels of glucose transporter 1 (GLUT1) RNA and protein, wild-type virus infection induced no significant change in levels of either GLUT1 RNA or protein. Nevertheless, virus-infected cells did show increases in GLUT1 protein in plasma membranes. These results point to a posttranslational mechanism in the elevation of glucose transport by polyoma virus middle T involving activation of PI 3-kinase and translocation of GLUT1.