958 resultados para carpase recruitment domain containing protein 9


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cdca4 (Hepp) was originally identified as a gene expressed specifically in hematopoietic progenitor cells as opposed to hematopoietic stem cells. More recently, it has been shown to stimulate p53 activity and also lead to p53-independent growth inhibition when overexpressed. We independently isolated the murine Cdca4 gene in a genomic expression-based screen for genes involved in mammalian craniofacial development, and show that Cdca4 is expressed in a spatio-temporally restricted pattern during mouse embryogenesis. In addition to expression in the facial primordia including the pharyngeal arches, Cdca4 is expressed in the developing limb buds, brain, spinal cord, dorsal root ganglia, teeth, eye and hair follicles. Along with a small number of proteins from a range of species, the predicted CDCA4 protein contains a novel SERTA motif in addition to cyclin A-binding and PHD bromodomain-binding regions of homology. While the function of the SERTA domain is unknown, proteins containing this domain have previously been linked to cell cycle progression and chromatin remodelling. Using in silico database mining we have extended the number of evolutionarily conserved orthologues of known SERTA domain proteins and identified an uncharacterised member of the SERTA domain family, SERTAD4, with orthologues to date in human, mouse, rat, dog, cow, Tetraodon and chicken. Immunolocalisation of transiently and stably transfected epitope-tagged CDCA4 protein in mammalian cells suggests that it resides predominantly in the nucleus throughout all stages of the cell cycle. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperprolactinaemia during lactation is a consequence of the sucking stimulus and in part due to reduced prolactin (PRL) negative feedback. To date, the mechanisms involved in this diminished sensitivity to PRL feedback are unknown but may involve changes in PRL signal transduction within tuberoinfundibular dopaminergic (TIDA) neurons. Therefore, we investigated signal transducers and activators of transcription (STAT) 5 signaling in the TIDA neurons of lactating rats. Dual-label confocal immunofluorescence studies were used to determine the intracellular distribution of STAT5 within TIDA neurons in the dorsomedial arcuate nucleus. In lactating rats with pups removed for 16 h, injection of ovine PRL significantly (P < 0.05) increased the STAT5 nuclear/cytoplasmic ratio compared with vehicle-treated mothers. In contrast, ovine PRL injection did not increase the STAT5 nuclear/cytoplasmic ratio in lactating mothers with pups, demonstrating that PRL signal transduction through STAT5 is reduced in TIDA neurons in the presence of pups. To investigate possible mechanisms involved in reduced PRL signaling, we examined the expression of suppressors of cytokine signaling (SOCS) proteins. Northern analysis on whole hypothalamus showed that CIS (cytokine-inducible SH2 domain-containing protein), but not SOCS1 or SOCS3, mRNA expression was significantly (P < 0.01) up-regulated in suckled lactating rats. Semiquantitative RT-PCR on arcuate nucleus micropunches also showed up-regulation of CIS transcripts. Immunofluorescence studies demonstrated that CIS is expressed in all TIDA neurons in the dorsomedial arcuate nucleus, and the intensity of CIS staining in these neurons is significantly (P < 0.05) increased in lactating rats with sucking pups. Together, these results support the hypothesis that loss of sensitivity to PRL-negative feedback during lactation is a result of increased CIS expression in TIDA neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of FIC (Filamentation induced by cAMP)(2) domain containing proteins in the regulation of many vital pathways, mostly through the transfer of NMPs from NTPs to specific target proteins (NMPylation), in microorganisms, higher eukaryotes, and plants is emerging. The identity and function of FIC domain containing protein of the human pathogen, Mycobacterium tuberculosis, remains unknown. In this regard, M. tuberculosis fic gene (Mtfic) was cloned, overexpressed, and purified to homogeneity for its biochemical characterisation. It has the characteristic FIC motif, HPFREGNGRSTR (HPFxxGNGRxxR), spanning 144th to 155th residue. Neither the His-tagged nor the GST-tagged MtFic protein, overexpressed in Escherichia coil, nor expression of Mtfic in Mycobacterium smegmatis, yielded the protein in the soluble fraction. However, the maltose binding protein (MBP) tagged MtFic (MBP-MtFic) could be obtained partly in the soluble fraction. The cloned, overexpressed, and purified recombinant MBP-MtFic showed conversion of ATP, GTP, CTP, and UTP into AMP. GMP, CMP, and UMP, respectively. Sequence alignment with several FIC motif containing proteins, complemented with homology modeling on the FIC motif containing protein, VbhT of Bartonella schoenbuchensis as the template, showed conservation and interaction of residues constituting the FIC domain. Site-specific mutagenesis of the His144, or Glu148, or Asn150 of the FIC motif, or of Arg87 residue that constitutes the FIC domain, or complete deletion of the FIC motif, abolished the NTP to NMP conversion activity. The design of NMP formation assay using the recombinant, soluble MtFic would enable identification of its target substrate for NMPylation. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional gastrointestinal disorders (FGIDs) are defined as ailments of the mid or lower gastrointestinal tract which are not attributable to any discernable anatomic or biochemical defects.1 FGIDs include functional bowel disorders, also known as persisting abdominal symptoms (PAS). Irritable bowel syndrome (IBS) is one of the most common illnesses classified under PAS.2,3 This is the first prospective study that looks at the etiology and pathogenesis of post-infectious PAS in the context of environmental exposure and genetic susceptibility in a cohort of US travelers to Mexico. Our objective was to identify infectious, genetic and environmental factors that predispose to post infectious PAS. ^ Methods. This is a secondary data analysis of a prospective study on a cohort of 704 healthy North American tourists to Cuernavaca, Morelos and Guadalajara, Jalisco in Mexico. The subjects at risk for Travelers' diarrhea were assessed for chronic abdominal symptoms on enrollment and six months after the return to the US. ^ Outcomes. PAS was defined as disturbances of mid and lower gastrointestinal system without any known pathological or radiological abnormalities, or infectious, or metabolic causes. It refers to functional bowel disease, category C of functional gastrointestinal diseases as defined by the Rome II criterion. PAS was sub classified into Irritable bowel syndrome (IBS) and functional abdominal disease (FAD). ^ IBS is defined as recurrent abdominal pain or discomfort present at least 25% and associated with improvement with defecation, change in frequency and form of stool. FAD encompasses other abdominal symptoms of chronic nature that do not meet the criteria for IBS. It includes functional diarrhea, functional constipation, functional bloating: and unspecified bowel symptoms. ^ Results. Among the 704 travelers studied, there were 202 cases of PAS. The PAS cases included 175 cases of FAD and 27 cases of IBS. PAS was more frequent among subjects who developed traveler's diarrhea in Mexico compared to travelers who remained healthy during the short term visit to Mexico (52 vs. 38; OR = 1.8; CI, 1.3–2.5, P < 0.001). A statistically significant difference was noted in the mean age of subjects with PAS compared to healthy controls (28 vs. 34 yrs; OR = 0.97, CI, 0.95–0.98; P < 0.001). Travelers who experienced multiple episodes, a later onset of diarrhea in Mexico and passed greater numbers of unformed stools were more likely to be identified in PAS group at six months. Participants who developed TD caused by enterotoxigenic E.coli in Mexico showed a 2.6 times higher risk of developing FAD (P = 0.003). Infection with Providencia ssp. also demonstrated a greater risk to developing PAS. Subjects who sought treatment for diarrhea while in Mexico also displayed a significantly lower frequency of IBS at six months follow up (OR = 0.30; CI, 0.10–0.80; P = 0.02). ^ Forty six SNPs belonging to 14 genes were studied. Seven SNPs were associated with PAS at 6 months. These included four SNPs from the Caspase Recruitment Domain-Containing Protein 15 gene (CARD15), two SNPs from Surfactant Pulmonary-Associated Protein D gene (SFTPD) and one from Decay-Accelerating Factor For Complement gene (CD55). A genetic risk score (GRS) was composed based on the 7 SNPs that showed significant association with PAS. A 20% greater risk for PAS was noted for every unit increase in GRS. The risk increased by 30% for IBS. The mean GRS was high for IBS (2.2) and PAS (1.1) compared to healthy controls (0.51). These data suggests a role for these genetic polymorphisms in defining the susceptibility to PAS. ^ Conclusions. The study allows us to identify individuals at risk for developing post infectious IBS (PI-IBS) and persisting abdominal symptoms after an episode of TD. The observations in this study will be of use in developing measures to prevent and treat post-infectious irritable bowel syndrome among travelers including pre-travel counseling, the use of vaccines, antibiotic prophylaxis or the initiation of early antimicrobial therapy. This study also provides insights into the pathogenesis of post infectious PAS and IBS. (Abstract shortened by UMI.)^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alphaviruses are positive strand RNA viruses that replicate in association with cellular membranes. The viral RNA replication complex consists of four non-structural proteins nsP1-nsP4 which are essential for viral replication. The functions of nsP1, nsP2 and nsP4 are well established, but the roles of nsP3 are mainly unknown. In this work I have clarified some of the functions of nsP3 in order to better understand the importance of this protein in virus replication. Semliki Forest virus (SFV) has been mostly used as a model alphavirus during this work, but some experiments have also been conducted with Sindbis and Chikungunya viruses. NsP3 is composed of three different protein domains. The N-terminus of nsP3 contains an evolutionarily conserved macrodomain, the central part of nsP3 contains a domain that is only found in alphaviruses, and the C-terminus of the protein is hypervariable and predicted to be unstructured. In this work I have analyzed the functions of nsP3 macrodomain, and shown that viral macrodomains bind poly(ADP-ribose) and that they do not resemble cellular macrodomains in their properties. Furthermore, I have shown that some macrodomains, including viral macrodomains of SFV and hepatitis E virus, also bind poly(A). Mutations in the ligand binding pocket of SFV macrodomain hamper virus replication but do not confer lethality, indicating that macrodomain function is beneficial but not mandatory for virus replication. The hypervariable C-terminus of nsP3 is heavily phosphorylated and is enriched in proline residues. In this work it is shown that this region harbors an SH3 domain binding motif (Sh3BM) PxRxPR through which cellular amphiphysin is recruited to viral replication sites and to nsP3 containing cytoplasmic aggregate structures. The function of Sh3BM was destroyed by a single point mutation, which led to impaired viral RNA replication in HeLa cells, pointing out the functional importance of amphiphysin recruitment by the Sh3BM. In addition, evidence is provided tho show that the endosomal localization of alphavirus replication is mediated by nsP3 and that the phosphorylation of hypervariable region might be important for the endosomal targeting. Together these findings demonstrate that nsP3 contains multiple important host interaction motifs and domains, which facilitate successful viral propagation in host cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cell receptor ζ (TcRζ)/CD3 ligation initiates a signaling cascade that involves src kinases p56lck and ζ-associated protein 70, leading to the phosphorylation of substrates such as TcRζ, Vav, SH2-domain-containing leukocyte protein 76 (SLP-76), cbl, and p120/130. FYN binding protein (FYB or p120/130) associates with p59fyn, the TcRζ/CD3 complex, and becomes tyrosine-phosphorylated in response to receptor ligation. In this study, we report the cDNA cloning of human and murine FYB and show that it is restricted in expression to T cells and myeloid cells and possesses an overall unique hydrophilic sequence with several tyrosine-based motifs, proline-based type I and type II SH3 domain binding motifs, several putative lysine/glutamic acid-rich nuclear localization motifs, and a SH3-like domain. In addition to binding the src kinase p59fyn, FYB binds specifically to the hematopoietic signaling protein SLP-76, an interaction mediated by the SLP-76 SH2 domain. In keeping with this, expression of FYB augmented interleukin 2 secretion from a T cell hybridoma, DC27.10, in response to TcRζ/CD3 ligation. FYB is therefore a novel hematopoietic protein that acts as a component of the FYN and SLP-76 signaling cascades in T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel protein, named BAS-AH, was purified and characterized from the skin of the toad Bufo andrewsi. BAS-AH is a single chain protein and the apparent molecular weight is about 63 kDa as judged by SDS-PAGE. BAS-AH was determined to bind heme (0.89 mol heme/mol protein) as determined by pyridine haemochrome analysis. Fifty percentage cytotoxic concentration (CC50) of BAS-AH on C8166 cells was 9.5 mu M. However, at concentrations that showed little effect oil cell viability, BAS-AH displayed dose dependent inhibition oil HIV-1 infection and replication. The antiviral selectivity indexes corresponding to the measurements of syncytium formation and HIV-1 p24 (CC50/EC50) were 14.4 and 11.4, respectively, corresponding to the . BAS-AH also showed an inhibitory effect on the activity of recombinant HIV-1 reverse transcriptase (IC50 = 1.32 mu M). The N-terminal sequence of BAS-AH was determined to be NAKXKADVIGKISILLGQDNLSNIVAM, which exhibited little identity with other known anti-HIV-1 proteins. BAS-AH is devoid of antibacterial, protcolytic, trypsin inhibitory activity, (L)-amino acid oxidase activity and catalase activity. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The progress in genome sequencing has led to an increasing submission of uncharacterized hypothetical genes with the domain of unknown function, DUF985, in GenBank, and none of these genes is related to a known protein. We therefore underwent an experimental study to identify the function of a DUF985 domain-containing hypothetical gene BbDUF985 (GenBank Accession No. AY273818) isolated from amphioxus Branchiostoma belcheri (B. belcheri). BbDUF985 was successfully expressed in both prokaryotic and eukaryotic systems, and its recombinant proteins expressed in both systems definitely exhibited an activity of phosphoglucose isomerase (PGI). Both tissue-section in situ hybridization and immunohistochemistry demonstrated that BbDUF985 was expressed in a tissue-specific manner, with most abundant levels in the hepatic caecum and ovary. In CHO cells transfected with the expression plasmid pEGFP-N1/BbDUF985, the fusion protein was targeted in the cytoplasm of CHO cells, suggesting that BbDUF985 is a cytosolic protein. In contrast, Western blotting indicated that BbDUF985 was also present in amphioxus humoral fluids, suggesting that it exists as a secreted protein as well. Our study provided a framework for further understanding the biochemical properties and physiological function of DUF985-containing hypothetical proteins in other species. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the FASEB summer research conference on "Arf Family GTPases", held in Il Ciocco, Italy in June, 2007, it became evident to researchers that our understanding of the family of Arf GTPase activating proteins (ArfGAPs) has grown exponentially in recent years. A common nomenclature for these genes and proteins will facilitate discovery of biological functions and possible connections to pathogenesis. Nearly 100 researchers were contacted to generate a consensus nomenclature for human ArfGAPs. This article describes the resulting consensus nomenclature and provides a brief description of each of the 10 subfamilies of 31 human genes encoding proteins containing the ArfGAP domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that small glutamine-rich TPR-containing protein (SGT) is the member of TPR motif family. However, the biological functions of SGT remain unclear. In this paper, we report that SGT plays a role in apoptotic signaling. Ectopic expression of SGT enhances DNA fragment and nucleus breakage after the induction of apoptosis. Increasing mRNA level of SGT is also observed in 7721 cells undergoing apoptosis, knockdown the expression of endogenous SGT contributes to the decrease of apoptosis of 7721 cells. Deletion analysis reveals that TPR domain is critical to pro-apoptotic function of SGT. Furthermore, we demonstrated that the PARP cleavage and cytochrome c release are enhanced when SGT is overexpressed in 7721 cells during apoptosis. Collectively, our results indicate that SGT is a new pro-apoptotic factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI–Fc receptor (FcR)-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI–FcR-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. Objective: To investigate the possibility that PECAM-1 regulates the formation of the Gab1–p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. Methods: The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. Results: PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2–p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.