992 resultados para altered peptide ligands


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modulation of protein binding specificity is important for basic biology and for applied science. Here we explore how binding specificity is conveyed in PDZ (postsynaptic density protein-95/discs large/zonula occludens-1) domains, small interaction modules that recognize various proteins by binding to an extended C terminus. Our goal was to engineer variants of the Erbin PDZ domain with altered specificity for the most C-terminal position (position 0) where a Val is strongly preferred by the wild-type domain. We constructed a library of PDZ domains by randomizing residues in direct contact with position 0 and in a loop that is close to but does not contact position 0. We used phage display to select for PDZ variants that bind to 19 peptide ligands differing only at position 0. To verify that each obtained PDZ domain exhibited the correct binding specificity, we selected peptide ligands for each domain. Despite intensive efforts, we were only able to evolve Erbin PDZ domain variants with selectivity for the aliphatic C-terminal side chains Val, Ile and Leu. Interestingly, many PDZ domains with these three distinct specificities contained identical amino acids at positions that directly contact position 0 but differed in the loop that does not contact position 0. Computational modeling of the selected PDZ domains shows how slight conformational changes in the loop region propagate to the binding site and result in different binding specificities. Our results demonstrate that second-sphere residues could be crucial in determining protein binding specificity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endoplasmatic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme involved in trimming of peptides to an optimal length for presentation by major histocompatibility complex (MHC) class I molecules. Polymorphisms in ERAP1 have been associated with chronic inflammatory diseases, including ankylosing spondylitis (AS) and psoriasis, and subsequent in vitro enzyme studies suggest distinct catalytic properties of ERAP1 variants. To understand structure-activity relationships of this enzyme we determined crystal structures in open and closed states of human ERAP1, which provide the first snapshots along a catalytic path. ERAP1 is a zinc-metallopeptidase with typical H-E-X-X-H-(X)18-E zinc binding and G-A-M-E-N motifs characteristic for members of the gluzincin protease family. The structures reveal extensive domain movements, including an active site closure as well as three different open conformations, thus providing insights into the catalytic cycle. A K 528R mutant strongly associated with AS in GWAS studies shows significantly altered peptide processing characteristics, which are possibly related to impaired interdomain interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

T-cell responses in humans are initiated by the binding of a peptide antigen to a human leukocyte antigen (HLA) molecule. The peptide-HLA complex then recruits an appropriate T cell, leading to cell-mediated immunity. More than 2000 HLA class-I alleles are known in humans, and they vary only in their peptide-binding grooves. The polymorphism they exhibit enables them to bind a wide range of peptide antigens from diverse sources. HLA molecules and peptides present a complex molecular recognition pattern, as many peptides bind to a given allele and a given peptide can be recognized by many alleles. A powerful grouping scheme that not only provides an insightful classification, but is also capable of dissecting the physicochemical basis of recognition specificity is necessary to address this complexity. We present a hierarchical classification of 2010 class-I alleles by using a systematic divisive clustering method. All-pair distances of alleles were obtained by comparing binding pockets in the structural models. By varying the similarity thresholds, a multilevel classification was obtained, with 7 supergroups, each further subclassifying to yield 72 groups. An independent clustering performed based only on similarities in their epitope pools correlated highly with pocket-based clustering. Physicochemical feature combinations that best explain the basis of clustering are identified. Mutual information calculated for the set of peptide ligands enables identification of binding site residues contributing to peptide specificity. The grouping of HLA molecules achieved here will be useful for rational vaccine design, understanding disease susceptibilities and predicting risk of organ transplants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) comprises the cannabinoid receptors CB1 and CB2 and their endogenous arachidonic acid-derived agonists 2-arachidonoyl glycerol and anandamide, which play important neuromodulatory roles. Recently, a novel class of negative allosteric CB1 receptor peptide ligands, hemopressin-like peptides derived from alpha hemoglobin, has been described, with yet unknown origin and function in the CNS. Using monoclonal antibodies we now identified the localization of RVD-hemopressin (pepcan-12) and N-terminally extended peptide endocannabinoids (pepcans) in the CNS and determined their neuronal origin. Immunohistochemical analyses in rodents revealed distinctive and specific staining in major groups of noradrenergic neurons, including the locus coeruleus (LC), A1, A5 and A7 neurons, which appear to be major sites of production/release in the CNS. No staining was detected in dopaminergic neurons. Peptidergic axons were seen throughout the brain (notably hippocampus and cerebral cortex) and spinal cord, indicative of anterograde axonal transport of pepcans. Intriguingly, the chromaffin cells in the adrenal medulla were also strongly stained for pepcans. We found specific co-expression of pepcans with galanin, both in the LC and adrenal gland. Using LC-MS/MS, pepcan-12 was only detected in non-perfused brain (∼40 pmol/g), suggesting that in the CNS it is secreted and present in extracellular compartments. In adrenal glands, significantly more pepcan-12 (400-700 pmol/g) was measured in both non-perfused and perfused tissue. Thus, chromaffin cells may be a major production site of pepcan-12 found in blood. These data uncover important areas of peptide endocannabinoid occurrence with exclusive noradrenergic immunohistochemical staining, opening new doors to investigate their potential physiological function in the ECS. This article is part of a Special Issue entitled 'Fluorescent Neuro-Ligands'.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Constitutive activity, or ligand-independent activity, of mutant G protein-coupled receptors (GPCRs) has been described extensively and implicated in the pathology of many diseases. Using the corticotropin-releasing factor (CRF) receptor and the thrombin receptor as a model, we present a ligand-dependent constitutive activation of a GPCR. A chimera in which the N-terminal domain of the CRF receptor is replaced by the amino-terminal 16 residues of CRF displays significant levels of constitutive activation. The activity, as measured by intracellular levels of cAMP, is blocked in a dose-dependent manner by the nonpeptide antagonist antalarmin. These results support a propinquity effect in CRF receptor activation, in which the amino-terminal portion of the CRF peptide is presented to the body of the receptor in the proper proximity for activation. This form of ligand-dependent constitutive activation may be of general applicability for the creation of constitutively activated GPCRs that are regulated by peptide ligands such as CRF. These chimeras may prove useful in analyzing mechanisms of receptor regulation and in the structural analysis of ligandactivated receptors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The major hurdle to be cleared in active immunotherapy of cancer is the poor immunogenicity of cancer cells. In previous attempts to overcome this problem, whole tumor cells have been used as vaccines, either admixed with adjuvant(s) or genetically engineered to express nonself proteins or immunomodulatory factors before application. We have developed a novel approach to generate an immunogeneic, highly effective vaccine: major histocompatibility complex (MHC) class I-positive cancer cells are administered together with MHC class I-matched peptide ligands of foreign, nonself origin, generated by a procedure we term transloading. Murine tumor lines of the H2-Kd or the H2-Db haplotype, melanoma M-3 and B16-F10, respectively, as well as colon carcinoma CT-26 (H2-Kd), were transloaded with MHC-matched influenza virus-derived peptides and applied as irradiated vaccines. Mice bearing a deposit of live M-3 melanoma cells were efficiently cured by this treatment. In the CT-26 colon carcinoma and the B16-F10 melanoma, high efficacies were obtained against tumor challenge, suggesting the universal applicability of this new type of vaccine. With foreign peptide ligands adapted to the requirements of a desired MHC class I haplotype, this concept may be used for the treatment of human cancers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The efficient in vitro expansion of antigen-specific CD8(+) cytotoxic T lymphocytes (CTL) for use in adoptive immunotherapy represents an important clinical goal. Furthermore, the avidity of expanded CTL populations often correlates closely with clinical outcome. In our study, high-avidity CTL lines could be expanded ex vivo from an antigen-primed animal using low peptide concentration, and intermediate peptide concentrations favored the generation of lower avidity CTL. Further increases in peptide concentration during culture inhibited the expansion of all peptide-specific CD8(+) cells. In contrast, a single amino acid variant peptide efficiently generated functional CTL populations at high or low peptide concentration, which responded to wild-type epitope with the lowest average avidity seen in this study. We propose that for some peptides, the efficient generation of low-avidity CTL responses will be favored by stimulation with altered peptide rather than high concentrations of wild-type epitope. In addition, some variant peptides designed to have improved binding to major histocompatibility complex class I may reduce rather than enhance the functional avidity for the wild-type peptide of ex vivo-expanded CTL. These observations are relevant to in vitro expansion of CTL for immunotherapy and strategies to elicit regulatory or therapeutic immunity to neo-self-antigen when central tolerance has eliminated high-avidity, cognate T cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MHC class I molecules generally present peptides of 8-10 aa long, forming an extended coil in the HLA cleft. Although longer peptides can also bind to class I molecules, they tend to bulge from the cleft and it is not known whether the TCR repertoire has sufficient plasticity to recognize these determinants during the antiviral CTL response. In this study, we show that unrelated individuals infected with EBV generate a significant CTL response directed toward an HLA-B*3501-restricted, 11-mer epitope from the BZLF1 Ag. The 11-mer determinant adopts a highly bulged conformation with seven of the peptide side chains being solvent-exposed and available for TCR interaction. Such a complex potentially creates a structural challenge for TCR corecognition of both HLA-B*3501 and the peptide Ag. Surprisingly, unrelated B*3501 donors recognizing the 11-mer use identical or closely related alpha beta TCR sequences that share particular CDR3 motifs. Within the small number of dominant CTL clonotypes observed, each has discrete fine specificity for the exposed-side chain residues of the peptide. The data show that bulged viral peptides are indeed immunogenic but suggest that the highly constrained TCR repertoire reflects a limit to TCR diversity when responding to some unusual MHC peptide ligands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The calcitonin gene-related peptide (CGRP) family of G protein- coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in aGαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMPdependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are the largest family of proteins within the human genome. They consist of seven transmembrane (TM) helices, with a N-terminal region of varying length and structure on the extracellular side, and a C-terminus on the intracellular side. GPCRs are involved in transmitting extracellular signals to cells, and as such are crucial drug targets. Designing pharmaceuticals to target GPCRs is greatly aided by full-atom structural information of the proteins. In particular, the TM region of GPCRs is where small molecule ligands (much more bioavailable than peptide ligands) typically bind to the receptors. In recent years nearly thirty distinct GPCR TM regions have been crystallized. However, there are more than 1,000 GPCRs, leaving the vast majority of GPCRs with limited structural information. Additionally, GPCRs are known to exist in a myriad of conformational states in the body, rendering the static x-ray crystal structures an incomplete reflection of GPCR structures. In order to obtain an ensemble of GPCR structures, we have developed the GEnSeMBLE procedure to rapidly sample a large number of variations of GPCR helix rotations and tilts. The lowest energy GEnSeMBLE structures are then docked to small molecule ligands and optimized. The GPCR family consists of five subfamilies with little to no sequence homology between them: class A, B1, B2, C, and Frizzled/Taste2. Almost all of the GPCR crystal structures have been of class A GPCRs, and much is known about their conserved interactions and binding sites. In this work we particularly focus on class B1 GPCRs, and aim to understand that family’s interactions and binding sites both to small molecules and their native peptide ligands. Specifically, we predict the full atom structure and peptide binding site of the glucagon-like peptide receptor and the TM region and small molecule binding sites for eight other class B1 GPCRs: CALRL, CRFR1, GIPR, GLR, PACR, PTH1R, VIPR1, and VIPR2. Our class B1 work reveals multiple conserved interactions across the B1 subfamily as well as a consistent small molecule binding site centrally located in the TM bundle. Both the interactions and the binding sites are distinct from those seen in the more well-characterized class A GPCRs, and as such our work provides a strong starting point for drug design targeting class B1 proteins. We also predict the full structure of CXCR4 bound to a small molecule, a class A GPCR that was not closely related to any of the class A GPCRs at the time of the work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structural homologues of vertebrate regulatory peptides found in defensive skin secretions of anuran amphibians often display enhanced bioactivity and receptor binding when compared with endogenous mammalian peptide ligands. Maximakinin, a novel N-terminally extended bradykinin (DLPKINRKGPRPPGFSPFR) from the skin venom of a Chinese toad (Bombina maxima), displays such activity enhancement when compared with bradykinin but is additionally highly selective for mammalian arterial smooth muscle bradykinin receptors displaying a 50-fold increase in molar potency in this smooth muscle type. In contrast, a 100-fold decrease in molar potency was observed at bradykinin receptors in intestinal and uterine smooth muscle preparations. Maximakinin has thus evolved as a “smart” defensive weapon in the toad with receptor/tissue selective targeting. Natural selection of amphibian skin venom peptides for antipredator defence, through inter-species delivery by an exogenous secretory mode, produces subtle structural stabilisation modifications that can potentially provide new insights for the design of selectively targeted peptide therapeutics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein–protein interactions are often mediated by the recognition of short continuous amino acid stretches on target proteins by specific binding domains. Affinity-based selection strategies have successfully been used to define recognition motifs for a large series of such protein domains. However, in many biological systems specificity of interaction may be of equal or greater importance than affinity. To address this issue we have developed a peptide library screening technology that can be used to directly define ligands for protein domains based on both affinity and specificity of interaction. We demonstrate the value of this approach by the selection of peptide ligands that are either highly specific for the Grb2 Src homology 2 (SH2) domain or that are cross-reactive between a group of related SH2 domains. Examination of previously identified physiological ligands for the Grb2 SH2 domain suggests that for these ligands regulation of the specificity of interaction may be an important factor for in vivo ligand selection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a potentially life-changing immune mediated disease of the central nervous system. Until recently, treatment has been largely confined to acute treatment of relapses, symptomatic therapies and rehabilitation. Through persistent efforts of dedicated physicians and scientists around the globe for 160 years, a number of therapies that have an impact on the long term outcome of the disease have emerged over the past 20 years. In this three part series we review the practicalities, benefits and potential hazards of each of the currently available and emerging treatment options for MS. We pay particular attention to ways of abrogating the risks of these therapies and provide advice on the most appropriate indications for using individual therapies. In Part 1 we review the history of the development of MS therapies and its connection with the underlying immunobiology of the disease. The established therapies for MS are reviewed in detail and their current availability and indications in Australia and New Zealand are summarised. We examine the evidence to support their use in the treatment of MS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eine Voraussetzung für die Entwicklung neuer immunmodulatorischer Therapieverfahren ist die Kenntnis immunogener Tumorantigene, die von tumorreaktiven T-Zellen erkannt werden. In der vorliegenden Arbeit wurden tumorreaktive CD8+ zytotoxische T-Lymphozyten (CTL, cytotoxic T-lymphocytes) aus dem Blut eines HLA (human leukocyte antigen)-kompatiblen Fremdspenders generiert. Methodisch wurden hierzu CD8-selektionierte periphere Blutlymphozyten repetitiv mit der klarzelligen Nierenzellkarzinomlinie MZ1851-RCC (RCC, renal cell carcinoma) in einer allogenen gemischten Lymphozyten-Tumorzell Kultur (MLTC, mixed lymphocyte tumor cell culture) stimuliert. Aus den Responderlymphozyten wurden mit Hilfe des Grenzverdünnungsverfahrens klonale zytotoxische T-Zellen generiert und expandiert. Die CTL-Klone wurden anschließend phänotypisch mittels Durchflußzytometrie sowie funktionell mittels HLA-Antikörper-Blockadeexperimenten und Kreuzreaktivitätstests detailliert charakterisiert. Dabei konnte gezeigt werden, daß aus dem Blut eines allogenen gesunden Spenders CD8+ T-Zellen isoliert werden können, welche Reaktivität gegen Nierenzellkarzinome (NZK) aufweisen und über verschiedene HLA-Klasse-I-Allele restringiert sind. Die von den einzelnen CTL-Klonen erkannten Zielstrukturen zeigten entweder ubiquitäre (z.B. HLA-Cw*0704-reaktiver CTL-Klon E77) oder eine tumorspezifische (z.B. HLA-B*0702-restringierter CTL-Klon A4) Gewebeexpression. Zur Identifizierung der natürlich prozessierten Peptidliganden wurden die HLA-B/C-Allele unter Verwendung des monoklonalen Antikörpers B123.2 aus einem zuvor hergestellten Detergenslysat der Nierenzellkarzinomlinie MZ1851-RCC immunchromatographisch aufgereinigt. Aus den so isolierten HLA-Peptid-Komplexen wurden die tumorassoziierten Peptidliganden nach Säureeluation und Filtration abgespalten und über eine „reverse phase“-HPLC (high performance liquid chromatography) fraktioniert. Die Überprüfung der einzelnen HPLC-Fraktionen auf Bioaktivität erfolgte mit den korrespondierenden CTL-Klonen in 51Cr-Zytotoxizitätstests. Dabei wurde eine HPLC-Fraktion identifiziert, die die lytische Funktion des HLA-B*0702-restringierten CTL-Klons A4 auslösen konnte. Die bioaktive HPLC-Fraktion wurde dazu durch eine zweite (second dimension) Kapillar-Flüssigkeitschromatographie (Cap-LC, capillar liquid chromatography) in Subfraktionen geringerer Komplexität aufgetrennt und die darin enthaltenen Peptidepitope durch das MALDI-TOF/TOF (matrix assisted laser desorption/ionization- time of flight/time of flight)-Analyseverfahren sequenziert. Innerhalb dieser HPLC-Fraktion wurden eine Vielzahl von HLA-B/C-assoziierten Peptidliganden erfolgreich sequenziert, was die Effektivität dieser Verfahrenstechnik zur Identifizierung natürlich prozessierter HLA-Klasse-I-bindender Peptide unter Beweis stellt. Leider war es mit dieser Methode bisher nicht möglich, das von CTL-Klon A4 detektierte Peptidepitop zu sequenzieren. Dies liegt möglicherweise in der unzureichenden Konzentration des Peptidepitops in der bioaktiven HPLC-Fraktion begründet. In Folgearbeiten soll nun mit erhöhter Probenmenge beziehungsweise verbesserter Analytik der erneute Versuch unternommen werden, das Zielantigen des CTL-Klons A4 zu identifizieren. Die Kenntnis von Antigenen, die tumorspezifisch exprimiert und von CD8+ CTL aus gesunden Spendern erkannt werden, eröffnet neue therapeutische Möglichkeiten, das spezifische Immunsystem des Stammzellspenders nach allogener Blutstammzelltransplantation gezielt zur Steigerung von Tumorabstoßungsreaktionen (z.B. durch Vakzinierung oder adoptivem T-Zelltransfer) zu nutzen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A genetic deficiency of the cysteine protease cathepsin L (Ctsl) in mice results in impaired positive selection of conventional CD4+ T helper cells as a result of an incomplete processing of the MHC class II associated invariant chain or incomplete proteolytic generation of positively selecting peptide ligands. The human genome encodes, in contrast to the mouse genome, for two cathepsin L proteases, namely cathepsin L (CTSL) and cathepsin V (CTSV; alternatively cathepsin L2). In the human thymic cortex, CTSV is the predominately expressed protease as compared to CTSL or other cysteine cathepsins. In order to analyze the functions of CTSL and CTSV in the positive selection of CD4+ T cells we employed Ctsl knock-out mice crossed either with transgenic mice expressing CTSL under the control of its genuine human promoter or with transgenic mice expressing CTSV under the control of the keratin 14 (K14) promoter, which drives expression to the cortical epithelium. Both human proteases are expressed in the thymus of the transgenic mice, and independent expression of both CTSL and CTSV rescues the reduced frequency of CD4+ T cells in Ctsl-deficient mice. Moreover, the expression of the human cathepsins does not change the number of CD4+CD25+Foxp3+ regulatory T cells, but the normalization of the frequency of conventional CD4+ T cell in the transgenic mice results in a rebalancing of conventional T cells and regulatory T cells. We conclude that the functional differences of CTSL and CTSV in vivo are not mainly determined by their inherent biochemical properties, but rather by their tissue specific expression pattern.