986 resultados para adenosine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To identify common genetic variants that predispose to caffeine-induced insomnia and to test whether genes whose expression changes in the presence of caffeine are enriched for association with caffeine-induced insomnia. DESIGN A hypothesis-free, genome-wide association study. SETTING Community-based sample of Australian twins from the Australian Twin Registry. PARTICIPANTS After removal of individuals who said that they do not drink coffee, a total of 2,402 individuals from 1,470 families in the Australian Twin Registry provided both phenotype and genotype information. MEASUREMENTS AND RESULTS A dichotomized scale based on whether participants reported ever or never experiencing caffeine-induced insomnia. A factor score based on responses to a number of questions regarding normal sleep habits was included as a covariate in the analysis. More than 2 million common single nucleotide polymorphisms (SNPs) were tested for association with caffeine-induced insomnia. No SNPs reached the genome-wide significance threshold. In the analysis that did not include the insomnia factor score as a covariate, the most significant SNP identified was an intronic SNP in the PRIMA1 gene (P = 1.4 x 10(-)(6), odds ratio = 0.68 [0.53 - 0.89]). An intergenic SNP near the GBP4 gene on chromosome 1 was the most significant upon inclusion of the insomnia factor score into the model (P = 1.9 x 10(-)(6), odds ratio = 0.70 [0.62 - 0.78]). A previously identified association with a polymorphism in the ADORA2A gene was replicated. CONCLUSIONS Several genes have been identified in the study as potentially influencing caffeine-induced insomnia. They will require replication in another sample. The results may have implications for understanding the biologic mechanisms underlying insomnia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has a relatively high heritability, and on the other hand adenosine regulates sleep homeostasis and might also be involved in mood modulation, adenosine-related genes should be considered for their possible contribution to a predisposition for depression and disturbed sleep in humans. Depression is a complex disorder likely involving the abnormal functioning of several genes. Novel target genes which could serve as the possible common substrates for depression and comorbid disturbed sleep should be identified. In this way specific brain areas related to sleep regulation should be studied by using animal model of depression which represents more homogenous phenotype as compared to humans. It is also important to study these brain areas during the development of depressive-like features to understand how early changes could facilitate pathophysiological changes in depression. Aims and methods: We aimed to find out whether, in the basal forebrain, adenosine induces recovery non-rapid eye movement (NREM) sleep after prolonged waking through the A1 or/and A2A receptor subtype. A1 and A2A receptor antagonists were perfused into the rat basal forebrain during 3 h of sleep deprivation, and the amount of NREM sleep and delta power during recovery NREM sleep were analyzed. We then explored whether polymorphisms in genes related to the metabolism, transport and signaling of adenosine could predispose to depression accompanied by signs of disturbed sleep. DNA from 1423 individuals representative of the Finnish population and including controls and cases with depression, depression accompanied by early morning awakenings and depression accompanied by fatigue, was used in the study to investigate the possible association between polymorphisms from adenosine-related genes and cases. Finally to find common molecular substrates of depression and disturbed sleep, gene expression changes were investigated in specific brain areas in the rat clomipramine model of depression. We focused on the basal forebrain of 3-week old clomipramine-treated rats which develop depressive-like symptoms later in adulthood and on the hypothalamus of adult female clomipramine-treated rats. Results: Blocking of the A1 receptor during sleep deprivation resulted in a reduction of the recovery NREM sleep amount and delta power, whereas A2A receptor antagonism had no effect. Polymorphisms in adenosine-related genes SLC29A3 (equilibrative nucleoside transporter type 3) in women and SLC28A1 (concentrative nucleoside transporter type 1) in men associated with depression alone as well as when accompanied by early morning awakenings and fatigue. In Study III the basal forebrain of postnatal rats treated with clomipramine displayed disturbances in gamma-aminobutyric acid (GABA) receptor type A signaling, in synaptic transmission and possible epigenetic changes. CREB1 was identified as a common transcription denominator which also mediates epigenetic regulation. In the hypothalamus the major changes included the expression of genes in GABA-A receptor pathway, K+ channel-related, glutamatergic and mitochondrial genes, as well as an overexpression of genes related to RNA and mRNA processing. Conclusions: Adenosine plays an important role in sleep homeostasis by promoting recovery NREM sleep via the A1 receptor subtype in the basal forebrain. Also adenosine levels might contribute to the risk of depression with disturbed sleep, since the genes encoding nucleoside transporters showed the strongest associations with depression alone and when accompanied by signs of disturbed sleep in both women and men. Sleep and mood abnormalities in major depressive disorder could be a consequence of multiple changes at the transcriptional level, GABA-A receptor signaling and synaptic transmission in sleep-related basal forebrain and the hypothalamus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new modified nucleoside 2-²-O-methyl-l-methyl adenosine has been found to be present in the tRNA of (eleusine coracana ) (ragi) seedlings. The sequence of the dinucleotide of which this modified nucleoside is a part suggests its presence in phenylalanine-tRNA. The structural implications of the presence of this new modification are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isopentenyl adenosine antibodies useful in the investigations of the "cytokinin" functions of isopentenyl adenosine were purified by affinity chromatography. Using different affinity columns, the antibodies were purified to near complete purity. Analyses of the purified proteins revealed the presence of isopentenyl adenosine binding proteins in normal rabbit serum, which presence supports a suggested role for isopentenyl adenosine and its related compounds in animal cell division in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of AMP to the crystalline and homogeneous mung bean nucleotide pyrophosphatase [EC 3.6.1.9]altered its electrophoretic mobility. AMP was tightly bound to the enzyme and was not removed on passage through a column of Sephadex G-25 or on electrophoresis. The molecular weight of the native and AMP-modified enzymes were 65,000 and 136,000, respectively. The properties of the native enzyme such as the pH (9.4) and temperature (49 °C) optima, inhibition by EDTA, reversal of EDTA-inhibition by Zn2+ and Co2+, were not altered on dimerization by AMP. The AMP-modified enzyme had a linear time-course of reaction, unlike the native enzyme which exhibited a biphasic time-course of reaction. The AMP-modified enzyme was irreversibly denatured by urea. AMP concentrations larger than 100 μM inhibited linearly the activity of the AMP-modified enzyme. ADP and ATP inhibited the activity in a sigmoidal manner. Km and V of the native and AMP-modified enzymes were, 0.25 mImage and 0.58 mImage ; and 3.3 and 2.5, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antihypercholesterolemic drug clofibrate (ethyl-α-p-chlorophenoxyisobutyrate) stimulated the latent ATPase activity and “superstimulated” the uncoupler-induced ATPase activity of rat-liver mitochondria. Addition of clofibrate decreased the turbidity of mitochondrial suspensions and released considerable amount of mitochondrial protein into solution. In these properties it closely resembled detergents like Triton X-100 and deoxycholate. However, unlike the detergents, clofibrate required the presence of a permeant cation for its disruptive action. Also, it was without any such effect on sonic submitochondrial particles. The drug enhanced the uptake of both Mg2 and Cl− by mitochondria suggesting that osmotic swelling precedes lysis. Sonic submitochondrial particles prepared in the presence of clofibrate showed a greater yield and comparable ATPase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structures of lithium, sodium, potassium, calcium and magnesium salts of adenosine 2'-monophosphate (2'-AMP) have been obtained at atomic resolution by X-ray crystallographic methods. 2'-AMP.Li belongs to the monoclinic space group P21 with a = 7.472(3)Å, b = 26.853(6) Å, c = 9.184(1)Å, b = 113.36(1)Å and Z= 4. 2'-AMP.Na and 2'-AMP.K crystallize in the trigonal space groups P31 and P3121 with a = 8.762(1)Å, c = 34.630(5)Å, Z= 6 and a = 8.931(4), Åc = 34.852(9)Å and Z= 6 respectively while 2'-AMP.Ca and 2'-AMP.Mg belong to space groups P6522 and P21 with cell parameters a = 9.487(2), c = 74.622(13), Z = 12 and a = 4.973(1), b = 10.023(2), c = 16.506(2), beta = 91.1(0) and Z = 2 respectively. All the structures were solved by direct methods and refined by full matrix least-squares to final R factors of 0.033, 0.028, 0.075, 0.069 and 0.030 for 2'-AMP.Li, 2'-AMP.Na, 2'- AMP.K, 2'-AMP.Ca and 2'-AMP.Mg, respectively. The neutral adenine bases in all the structures are in syn conformation stabilized by the O5'-N3 intramolecular hydrogen bond as in free acid and ammonium complex reported earlier. In striking contrast, the adenine base is in the anti geometry (cCN = -156.4(2)°) in 2'-AMP.Mg. Ribose moieties adopt C2'-endo puckering in 2'-AMP.Li and 2'-AMP.Ca, C2'-endo-C3'-exo twist puckering in 2'-AMP.Na and 2'-AMP.K and a C3'-endo-C2'-exo twist puckering in 2'-AMP.Mg structure. The conformation about the exocyclic C4'-C5' bond is the commonly observed gauche-gauche (g+) in all the structures except the gauche- trans (g-) conformation observed in 2'-AMP.Mg structure. Lithium ions coordinate with water, ribose and phosphate oxygens at distances 1.88 to 1.99Å. Na+ ions and K+ ions interact with phosphate and ribose oxygens directly and with N7 indirectly through a water oxygen. A distinct feature of 2'-AMP.Na and 2'-AMP.K structures is the involvement of ribose O4' in metal coordination. The calcium ion situated on a two-fold axis coordinates directly with three oxygens OW1, OW2 and O2 and their symmetry mates at distances 2.18 to 2.42Å forming an octahedron. A classic example of an exception to the existence of the O5'-N3 intramolecular hydorgen bond is the 2'-AMP.Mg strucure. Magnesium ion forms an octahedral coordination with three water and three phosphate oxygens at distances ranging from 2.02 to 2.11Å. A noteworthy feature of its coordination is the indirect link with N3 through OW3 oxygen resulting in macrochelation between the base and the phosphate group. Greater affnity of metal clays towards 5' compared to 2' and 3' nucleotides (J. Lawless, E. Edelson, and L. Manring, Am. Chem. Soc. Northwest Region Meeting, Seattle. 1978) due to macrochelation infered from solution studies (S. S. Massoud, H. Sigel, Eur. J. Biochem. 179, 451-458 (1989)) and interligand hydrogen bonding induced by metals postulated from metal-nucleotide structures in solid state (V. Swaminathan and M. Sundaralingam, CRC. Crit. Rev. Biochem. 6, 245-336 (1979)) are borne out by our structures also. The stacking patterns of adenine bases of both 2'-AMP.Na and 2'-AMP.K structures resemble the 2'-AMP.NH4 structure reported in the previous article. 2'-AMP.Li, 2'-AMP.Ca and 2'-AMP.Mg structures display base-ribose O4' stacking. An overview of interaction of monovalent and divalent cations with 2' and 5'-nucleotides has been presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wealth of information available from x-ray crystallographic structures of enzyme-ligand complexes makes it possible to study interactions at the molecular level. However, further investigation is needed when i) the binding of the natural substrate must be characterized, because ligands in the stable enzyme-ligand complexes are generally inhibitors or the analogs of substrate and transition state, and when ii) ligand binding is in part poorly characterized. We have investigated these aspects i? the binding of substrate uridyl 3',5'-adenosine (UpA) to ribonuclease A (RNase A). Based on the systematically docked RNase A-UpA complex resulting from our previous study, we have undertaken a molecular dynamics simulation of the complex with solvent molecules. The molecular dynamics trajectories of this complex are analyzed to provide structural explanations for varied experimental observations on the ligand binding at the B2 subsite of ribonuclease A. The present study suggests that B2 subsite stabilization can be effected by different active site groups, depending on the substrate conformation. Thus when adenosine ribose pucker is O4'-endo, Gln69 and Glu111 form hydrogen-bonding contacts with adenine base, and when it is C2'-endo, Asn71 is the only amino acid residue in direct contact with this base. The latter observation is in support of previous mutagenesis and kinetics studies. Possible roles for the solvent molecules in the binding subsites are described. Furthermore, the substrate conformation is also examined along the simulation pathway to see if any conformer has the properties of a transition state. This study has also helped us to recognize that small but concerted changes in the conformation of the substrate can result in substrate geometry favorable for 2',3' cyclization. The identified geometry is suitable for intraligand proton transfer between 2'-hydroxyl and phosphate oxygen atom. The possibility of intraligand proton transfer as suggested previously and the mode of transfer before the formation of cyclic intermediate during transphosphorylation are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies specific for N6-(delta 2-isopentenyl) adenosine (i6A) were immobilized on Sepharose and this adsorbent (Sepharose-anti-i6A) was used to selectively isolate bacteriophage T4 tRNA precursors containing i6A/ms2i6A from an unfractionated population of 32P-labeled T4 RNAs. The results showed that antibodies to i6A selectively bound only those tRNA precursors containing i6A/ms2i6A. Binding of tRNA precursors by antibody and specificity of the binding was assessed by membrane binding using 32P-labeled tRNA precursor. Binding was highly specific for i6A/ms2i6A residues in the tRNA precursors. This binding can be used to separate modified from unmodified precursor RNAs and to study the biosynthetic pathways of tRNA precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in vitro incorporation of [3H]uridine into RNA and [3H]leucine into protein in slices of porcine thyroid was studied. Thyrotropin (10-500 mU/ml of medium), when added with [3H]uridine, inhibited incorporation into RNA, but as little as 10 mU of thyrotropin per ml stimulated incorporation of [3H]orotic acid into RNA. Uridine kinase (EC 2.7.1.48) was found to be inhibited in slices incubated with thyrotropin whereas UMP 5′ nucleotidase (EC 2.1.3.5) was not. Preincubation of slices with thyrotropin (5-50 mU/ml) led to enhanced incorporation of subsequently added [3H]uridine and [3H]leucine. When slices were preincubated with long-acting thyroid stimulator-IgG (2.5 or 5 mg per ml of medium) incorporation of [3H]uridine and [3H]leucine was similarly enhanced, with the smaller concentration being more effective. Without preincubation these stimulatory effects were mimicked by 1 mM dibutyryl 3′,5′-AMP and, to a lesser extent, 1 mM 3′,5′-AMP. AMP and ATP also stimulated [3H]uridine incorporation in this system but only after more prolonged periods of incubation than were required for the other nucleotides. RNA polymerase (EC 2.7.7.6) activity measured in isolated thyroid nuclei had two components, one Mg2+-stimulated and the other requ ring Mn2+ and high salt content [0.4 M (NH4)2SO4]. These activities, and particularly the former, were enhanced if thyroid slices were incubated with thyrotropin (5-100 mU/ml of medium), 2.5 mg or 5.0 mg of long-acting thyroid stimulator-IgG per ml, or 1 mM dibutyryl 3′,5′-AMP, before isolatior of the nuclei and measurement of enzyme activities; 1 mM AMP, ADP, or 2′,3′-GMP had no influence. Added directly to the nuclei, thyrotropin, long-acting thyroid stimulator-IgG, and dibutyryl 3′,5′-AMP had no effect on RNA polymerase activities. These data are seen as affording evidence for mediation by 3′,5′-AMP of effects of thyrotropin and long-acting thyroid stimulator on thyroid RNA and protein synthesis, at least in part through an indirect stimulation of nuclear RNA polymerase activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of dibutyryl 3′,5′-cyclic AMP to slices of bovine pituitary stimulated incorporation of [3H]leucine into protein, whether or not actinomycin D was present; therefore the influence of 3′,5′-cyclic AMP on protein synthesis by bovine pituitary polysomes was studied. If the cyclic nucleotide was added to the complete protein-synthesizing system (including pH 5.0 enzyme), stimulation of [3H]leucine incorporation occurred only with pH 5.0 enzyme from rat liver; there was no stimulation when homologous enzyme, i.e., from bovine pituitary, was used. Addition of 3′,5′-cyclic AMP to the polysomes, before addition of pH 5.0 enzyme, resulted in stimulation of protein synthesis with either source of enzyme, but stimulation was facilitated to a greater degree, over the range 0.5-2 mM 3′,5′-cyclic AMP, when rat liver was the source. The stimulation of protein synthesis was prevented by the addition of cycloheximide. With rat liver pH 5.0 enzyme the product of hydrolysis of 3′,5′-cyclic AMP was mainly 5′-AMP whereas with pituitary pH 5.0 enzyme there was also dephosphorylation and deamination resulting in production of hypoxanthine and other bases. However, using either source of pH 5.0 enzyme and the complete protein-synthesizing system (i.e., including an ATP-regenerating mechanism) most of the 3H from hydrolysis of [3H]3′,5′-cyclic AMP was incorporated into ATP. The data are seen as compatible with a stimulation by 3′,5′-cyclic AMP of translation by pituitary polysomes; the significance of the importance of the source of pH 5.0 enzyme used in the system is obscure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrophosphate prototypes such as methyl triphosphate and methyl diphosphate molecules in their different protonation states have been investigated at high levels of quantum chemical calculations. The optimized geometries, the thermochemistry of the hydrolysis and the molecular orbitals contributing to the high energy of these compounds have been analyzed. These investigations provide insights into the "high energy" character of ATP molecule. Further, the dependence of vibrational frequencies on the number of phosphate groups and the charged states has also been presented. These results can aid the interpretation of spectra obtained by experiments on complexes containing pyrophosphate prototypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrophosphate prototypes such as methyl triphosphate and methyl diphosphate molecules in their different protonation states have been investigated at high levels of quantum chemical calculations. The optimized geometries, the thermochemistry of the hydrolysis and the molecular orbitals contributing to the high energy of these compounds have been analyzed. These investigations provide insights into the ``high energy'' character of ATP molecule. Further, the dependence of vibrational frequencies on the number of phosphate groups and the charged states has also been presented. These results can aid the interpretation of spectra obtained by experiments on complexes containing pyrophosphate prototypes. (c) 2005 Elsevier B.V. All rights reserved.