909 resultados para Vitamin B Complex
Resumo:
BACKGROUND: Current data suggest that physiologic doses of vitamin B-6 have no significant homocysteine-lowering effect. It is possible that an effect of vitamin B-6 was missed in previous trials because of a much greater effect of folic acid, vitamin B-12, or both. OBJECTIVE: The aim of this study was to investigate the effect of low-dose vitamin B-6 supplementation on fasting total homocysteine (tHcy) concentrations in healthy elderly persons who were made replete with folate and riboflavin. DESIGN: Twenty-two healthy elderly persons aged 63-80 y were supplemented with a low dose of vitamin B-6 (1.6 mg/d) for 12 wk in a randomized, double-blind, placebo-controlled trial after repletion with folic acid (400 microg/d for 6 wk) and riboflavin (1.6 mg/d for 18 wk); none of the subjects had a vitamin B-12 deficiency. RESULTS: Folic acid supplementation lowered fasting tHcy by 19.6% (P
Resumo:
In the UK vitamin B-12, deficiency occurs in approximately 20% of adults aged >65 years. This incidence is significantly higher than that among the general population. The reported incidence invariably depends on the criteria of deficiency used, and in fact estimates rise to 24% and 46% among free-living and institutionalised elderly respectively when methylmalonic acid is used as a marker of vitamin B-12 status. The incidence of, and the criteria for diagnosis of, deficiency have drawn much attention recently in the wake of the implementation of folic acid fortification of flour in the USA. This fortification strategy has proved to be extremely successful in increasing folic acid intakes pre-conceptually and thereby reducing the incidence of neural-tube defects among babies born in the USA since 1998. However, in successfully delivering additional folic acid to pregnant women fortification also increases the consumption of folic acid of everyone who consumes products containing flour, including the elderly. It is argued that consuming additional folic acid (as 'synthetic' pteroylglutamic acid) from fortified foods increases the risk of 'masking' megaloblastic anaemia caused by vitamin B-12 deficiency. Thus, a number of issues arise for discussion. Are clinicians forced to rely on megaloblastic anaemia as the only sign of possible vitamin B-12 deficiency? Is serum vitamin B-12 alone adequate to confirm vitamin B-12 deficiency or should other diagnostic markers be used routinely in clinical practice? Is the level of intake of folic acid among the elderly (post-fortification) likely to be so high as to cure or 'mask' the anaemia associated with vitamin B-12 deficiency?.
Resumo:
Folate and vitamin B-6 act in generating methyl groups for homocysteine remethylation, but the kinetic effects of folate or vitamin B-6 deficiency are not known. We used an intravenous primed, constant infusion of stable isotope-labeled serine, methionine, and leucine to investigate one-carbon metabolism in healthy control (n = 5), folate-deficient (n = 4), and vitamin B-6-deficient (n = 5) human subjects. The plasma homocysteine concentration in folate-deficient subjects [15.9 +/-2.1 (SD) mu mol/l] was approximately two times that of control (7.4 +/-1.7 mmol/l) and vitamin B-6-deficient (7.7 +/-2.1 mmol/l) subjects. The rate of methionine synthesis by homocysteine remethylation was depressed (P = 0.027) in folate deficiency but not in vitamin B-6 deficiency. For all subjects, the homocysteine remethylation rate was not significantly associated with plasma homocysteine concentration (r = -0.44, P = 0.12). The fractional synthesis rate of homocysteine from methionine was positively correlated with plasma homocysteine concentration (r = 0.60, P = 0.031), and a model incorporating both homocysteine remethylation and synthesis rates closely predicted plasma homocysteine levels (r = 0.85, P = 0.0015). Rates of homocysteine remethylation and serine synthesis were inversely correlated (r = -0.89, P < 0.001). These studies demonstrate distinctly different metabolic consequences of vitamin B-6 and folate deficiencies.
Resumo:
Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [H-2(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats pi and 0.1 mg pyridoxine (PN)/kg diet]. [H-2(3)]Leucine and [1-C-13]methionine were also used to examine turnover of protein and methionine pools, respectively, All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [H-2(3)]leucine. Hepatic [H-2(2)]methionine production from [H-2(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [H-2(3)]cysteine from the [H-2(3)]serine increased over twofold. In contrast, plasma appearance of [H-2(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-C-13]homocysteine/[1-C-13]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.
Resumo:
Folate is implicated in carcinogenesis via effects on DNA synthesis, repair, and methylation. Efficient folate metabolism requires other B vitamins and is adversely affected by smoking and alcohol. Esophageal adenocarcinoma (EAC) may develop through a process involving inflammation [reflux esophagitis (RE)] leading to metaplasia [Barrett’s esophagus (BE)] and carcinoma. Within a population-based, case-control study, we investigated associations between dietary folate and related factors and risks of EAC, BE, and RE. EAC and BE cases had histologically confirmed disease; RE cases had endoscopically visible inflammation. Controls, age-sex frequency matched to EAC cases, were selected through population and general practice registers. Participants underwent structured interviews and completed food-frequency questionnaires. Multivariate ORs and 95% CIs were computed using logistic regression. A total of 256 controls and 223 EAC, 220 BE, and 219 RE cases participated. EAC risk decreased with increasing folate intake (OR highest vs. lowest = 0.56; 95% CI: 0.31, 1.00; P-trend < 0.01). Similar trends were found for BE (P-trend < 0.01) and RE (P-trend = 0.01). Vitamin B-6 intake was significantly inversely related to risks of all 3 lesions. Riboflavin intake was inversely associated with RE. Vitamin B-12 intake was positively associated with EAC. For EAC, there was a borderline significant interaction between folate intake and smoking (P-interaction = 0.053); compared with nonsmokers with high (≥median) folate intake, current smokers with low intakes (<median) had an 8-fold increased risk (OR: 8.15; 95% CI: 3.61, 18.40). The same group had increased BE risk (OR: 2.93; 95% CI: 1.24, 6.92; P-interaction = 0.12). Folate and other dietary methyl-group factors are implicated in the etiology of EAC and its precursors.
Resumo:
Palladium and platinum complexes of pyridoxamine, pyridoxine and pyridoxal have been prepared. The structures of the complexes PtCI2PM.H20, trans-PdC12 (PN)2 and [PLH+ ]2[PtC16] 2- ,H20 have been determined by use of single crystal x-ray studies. The compounds PdC12PH, trans-PdC12 (PN) 2 , cis-PdCI2 (PN)2 and cis PdC12 (PL)2 were also studied by use of carbon-13 nmr spectroscopy. All the complexes have also been characterised by use of infrared spectral studies. In the complexes, PtCI2PM.H20 and PdC12PM, the ligand pyridoxamine is chela ted to the metal through the aminomethyl nitrogen and the phenolate oxygen atoms whereas in the complexes, trans-PdCI2 (PN)2' cis-PdCI2 (PN)2 and cis-PdC12 (PL)2 the vitamin B6 ligands are coordinated to the metal through the pyridine ring nitrogen. The compounds [PLH+ ]2[PtCI6] 2- .H20 and [PMH2] 2+ [PdCI4] 2- .H20have no direct metal-ligand bonding, In all the complexes, the metal maintains a square planar coordination except in [PLH +] 2[PtCI6] 2- ,H20 where the metal is octahedrally coordinated. PH pyridoxamine [PMH ] 2+ = diprotonated pyridoxamine 2 PN = pyridoxine PL pyridoxal PLH+ protonated pyridoxal
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The malaria parasite Plasmodium falciparum is able to synthesize de novo PLP (pyridoxal 5'-phosphate), the active form of vitamin B-6. In the present study, we have shown that the de novo synthesized PLP is used by the parasite to detoxify O-1(2) (singlet molecular oxygen), a highly destructive reactive oxygen species arising from haemoglobin digestion. The formation of O-1(2) and the response of the parasite were monitored by live-cell fluorescence microscopy, by transcription analysis and by determination of PLP levels in the parasite. Pull-down experiments of transgenic parasites overexpressing the vitamin B-6-biosynthetic enzymes PfPdx1 and PfPdx2 clearly demonstrated an interaction of the two proteins in vivo which results in an elevated PLP level from 12.5 mu M in wild-type parasites to 36.6 mu M in the PfPdx1/PfPdx2-overexpressing cells and thus to a higher tolerance towards O-1(2). In contrast, by applying the dominant-negative effect on the cellular level using inactive mutants of PfPdx1 and PfPdx2, P. falciparum becomes susceptible to O-1(2). Our results demonstrate clearly the crucial role of vitamin B-6 biosynthesis in the detoxification of O-1(2) in P falciparum. Besides the known role of PLP as a cofactor of many essential enzymes, this second important task of the vitamin B-6 de novo synthesis as antioxidant emphasizes the high potential of this pathway as a target of new anti-malarial drugs.
Resumo:
BPAG1-b is the major muscle-specific isoform encoded by the dystonin gene, which expresses various protein isoforms belonging to the plakin protein family with complex, tissue-specific expression profiles. Recent observations in mice with either engineered or spontaneous mutations in the dystonin gene indicate that BPAG1-b serves as a cytolinker important for the establishment and maintenance of the cytoarchitecture and integrity of striated muscle. Here, we studied in detail its distribution in skeletal and cardiac muscles and assessed potential binding partners. BPAG1-b was detectable in vitro and in vivo as a high molecular mass protein in striated and heart muscle cells, co-localizing with the sarcomeric Z-disc protein alpha-actinin-2 and partially with the cytolinker plectin as well as with the intermediate filament protein desmin. Ultrastructurally, like alpha-actinin-2, BPAG1-b was predominantly localized at the Z-discs, adjacent to desmin-containing structures. BPAG1-b was able to form complexes with both plectin and alpha-actinin-2, and its NH(2)-terminus, which contains an actin-binding domain, directly interacted with that of plectin and alpha-actinin. Moreover, the protein level of BPAG1-b was reduced in muscle tissues from plectin-null mutant mice versus wild-type mice. These studies provide new insights into the role of BPAG1-b in the cytoskeletal organization of striated muscle.
Resumo:
Reproduced from type-written copy.