989 resultados para Transcription, Genetic


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Germline mutations within the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene and one of its targets, the cyclin dependent kinase 4 (CDK4) gene, have been identified in a proportion of melanoma kindreds. In the case of CDK4, only one specific mutation, resulting in the substitution of a cysteine for an arginine at codon 24 (R24C), has been found to be associated with melanoma. We have previously reported the identification of germline CDKN2A mutations in 7/18 Australian melanoma kindreds and the absence of the R24C CDK4 mutation in 21 families lacking evidence of a CDKN2A mutation. The current study represents an expansion of these efforts and includes a total of 48 melanoma families from Australia. All of these families have now been screened for mutations within CDKN2A and CDK4, as well as for mutations within the CDKN2A homolog and 9p21 neighbor, the CDKN2B gene, and the alternative exon 1 (E1beta) of CDKN2A. Families lacking CDKN2A mutations, but positive for a polymorphism(s) within this gene, were further evaluated to determine if their disease was associated with transcriptional silencing of one CDKN2A allele. Overall, CDKN2A mutations were detected in 3/30 (10%) of the new kindreds. Two of these mutations have been observed previously: a 24 bp duplication at the 5' end of the gene and a G to C transversion in exon 2 resulting in an M531 substitution. A novel G to A transition in exon 2, resulting in a D108N substitution was also detected. Combined with our previous findings, we have now detected germline CDKN2A mutations in 10/48 (21%) of our melanoma kindreds. In none of the 'CDKN2A-negative' families was melanoma found to segregate with either an untranscribed CDKN2A allele, an R24C CDK4 mutation, a CDKN2B mutation, or an E1beta mutation. The last three observations suggest that these other cell cycle control genes (or alternative gene products) are either not involved at all, or to any great extent, in melanoma predisposition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

p53 is the central member of a critical tumor suppressor pathway in virtually all tumor types, where it is silenced mainly by missense mutations. In melanoma, p53 predominantly remains wild type, thus its role has been neglected. To study the effect of p53 on melanocyte function and melanomagenesis, we crossed the 'high-p53'Mdm4+/- mouse to the well-established TP-ras0/+ murine melanoma progression model. After treatment with the carcinogen dimethylbenzanthracene (DMBA), TP-ras0/+ mice on the Mdm4+/- background developed fewer tumors with a delay in the age of onset of melanomas compared to TP-ras0/+ mice. Furthermore, we observed a dramatic decrease in tumor growth, lack of metastasis with increased survival of TP-ras0/+: Mdm4+/- mice. Thus, p53 effectively prevented the conversion of small benign tumors to malignant and metastatic melanoma. p53 activation in cultured primary melanocyte and melanoma cell lines using Nutlin-3, a specific Mdm2 antagonist, supported these findings. Moreover, global gene expression and network analysis of Nutlin-3-treated primary human melanocytes indicated that cell cycle regulation through the p21WAF1/CIP1 signaling network may be the key anti-melanomagenic activity of p53.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The insulin-receptor substrate family plays important roles in cellular growth, signaling, and survival. Two new members of this family have recently been isolated: IRS5/Dok4 and IRS6/Dok5. This study examines the expression of IRS5/DOK4 in a panel of lung cancer cell lines and tumor specimens. The results demonstrate that expression of IRS5/DOK4 is frequently altered with both elevated and decreased expression in non-small-cell lung cancer (NSCLC) tumor specimens. The altered expression of IRS5/DOK4 observed in tumor samples is not due to aberrant methylation. In vitro cell culture studies demonstrate that treatment of NSCLC cell lines with the histone deacetylase inhibitor trichostatin A (TSA) upregulates IRS5/DOK4. This finding indicates that expression is regulated epigenetically at the level of chromatin remodeling. Chromatin immunoprecipitation experiments confirm that the IRS5/DOK4 promoter has enhanced histone hyperacetylation following treatments with TSA. Finally, hypoxia was demonstrated to downregulate IRS5/DOK4 expression. This expression was restored by TSA. The clinical relevance of altered IRS5/DOK4 expression in NSCLC requires fur ther evaluation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Cancer cells have been shown to be more susceptible to Ran knockdown than normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK [mitogen-activated protein/extracellular signal-regulated kinase (ERK; MEK)] and phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 activities. Experimental Design Apoptosis was measured by flow cytometry [propidium iodide (PI) and Annexin V staining] and MTT assay in cancer cells grown under different conditions after knockdown of Ran. The correlations between Ran expression and patient survival were examined in breast and lung cancers. Results Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. K-Ras-mutated, c-Met-amplified, and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of K-Ras or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Conclusion Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. ©2011 AACR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tobacco plants were transformed with a chimeric transgene comprising sequences encoding β-glucuronidase (GUS) and the satellite RNA (satRNA) of cereal yellow dwarf luteovirus. When transgenic plants were infected with potato leafroll luteovirus (PLRV), which replicated the transgene-derived satRNA to a high level, the satellite sequence of the GUS:Sat transgene became densely methylated. Within the satellite region, all 86 cytosines in the upper strand and 73 of the 75 cytosines in the lower strand were either partially or fully methylated. In contrast, very low levels of DNA methylation were detected in the satellite sequence of the transgene in uninfected plants and in the flanking nonsatellite sequences in both infected and uninfected plants. Substantial amounts of truncated GUS:Sat RNA accumulated in the satRNA-replicating plants, and most of the molecules terminated at nucleotides within the first 60 bp of the satellite sequence. Whereas this RNA truncation was associated with high levels of satRNA replication, it appeared to be independent of the levels of DNA methylation in the satellite sequence, suggesting that it is not caused by methylation. All the sequenced GUS:Sat DNA molecules were hypermethylated in plants with replicating satRNA despite the phloem restriction of the helper PLRV. Also, small, sense and antisense ∼22 nt RNAs, derived from the satRNA, were associated with the replicating satellite. These results suggest that the sequence-specific DNA methylation spread into cells in which no satRNA replication occurred and that this was mediated by the spread of unamplified satRNA and/or its associated 22 nt RNA molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nucleotide sequences of several animal, plant and bacterial genomes are now known, but the functions of many of the proteins that they are predicted to encode remain unclear. RNA interference is a gene-silencing technology that is being used successfully to investigate gene function in several organisms - for example, Caenorhabditis elegans. We discuss here that RNA-induced gene silencing approaches are also likely to be effective for investigating plant gene function in a high-throughput, genome-wide manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant and animal microRNAs (miRNAs) are evolutionarily ancient small RNAs, ∼19-24 nucleotides in length, that are generated by cleavage from larger highly structured precursor molecules. In both plants and animals, miRNAs posttranscriptionally regulate gene expression through interactions with their target mRNAs, and these targets are often genes involved with regulating key developmental events. Despite these similarities, plant and animal miRNAs exert their control in fundamentally different ways. Generally, animal miRNAs repress gene expression by mediating translational attenuation through (multiple) miRNA-binding sites located within the 3′ untranslated region of the target gene. In contrast, almost all plant miRNAs regulate their targets by directing mRNA cleavage at single sites in the coding regions. These and other differences suggest that the two systems may have originated independently, possibly as a prerequisite to the development of complex body plans. © Springer-Verlag 2005.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent research has revealed the existence of an elegant defence mechanism in plants and lower eukaryotes. The mechanism, known in plants as post-transcriptional gene silencing, works through sequence-specific degradation of RNA. It appears to be directed by double-stranded RNA, associated with the production of short 21-25 nt RNAs, and spread through the plant by a diffusible signal. The short RNAs are implicated as the guides for both a nuclease complex that degrades the mRNA and a methyltransferase complex that methylates the DNA of silenced genes. It has also been suggested that these short RNAs might be the mobile silencing signal, a suggestion that has been challenged recently.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have characterised the subgenomic RNAs of an Australian isolate of BYDV-PAV. Northern blot analyses of infected plants and protoplasts have shown that this isolate synthesises three subgenomic RNAs. Precise mapping of the transcription start sites of all three subgenomic RNAs and translational analyses of subgenomic RNA 2 and 3 have revealed a number of features. First, the transcription start site of subgenomic RNA 1 in this isolate differs markedly from the start site determined for an Illinois isolate of BYDV-PAV. Second, the start sites of subgenomic RNA 1 and 2 occur at a sequence that closely resembles the 5' end sequence of the genomic RNA (5'AGUGAAGA). Third, subgenomic RNA 2 appears to express ORF 6 of BYDV-PAV but the gene product is truncated due to the appearance of a new stop codon in the sequence. Last, subgenomic RNA 3, which is abundantly transcribed and encapsidated by the virus particle, appears to have no coding ability. We postulate that this novel subgenomic RNA has a regulatory function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A full-length cDNA clone of barley yellow dwarf virus (BYDV-PAV serotype) has been constructed and fused to the bacteriophage T7 RNA polymerase promoter. RNA transcripts produced in vitro, either capped or uncapped, were infectious in Triticum monococcum protoplasts. Protoplasts inoculated with in vitro-transcribed BYDV RNA accumulated coat protein, synthesized new viral RNAs, and produced virus particles. Aphid feeding on extracts from protoplasts inoculated with in vitro RNA transcripts can be used to transfer the virus progeny to whole plants. Introduction of mutations which interrupt specific BYDV-PAV open reading frames (ORFs) V and VI eliminated infectivity while an ORF I mutant remained infectious. Infectious RNA transcripts derived from BYDV cDNA clones will facilitate analysis of the molecular aspects of BYDV infection and further enhance our understanding of this economically important virus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amoebic gill disease (AGD) is a parasite-mediated proliferative gill disease capable of affecting a range of teleost hosts. While a moderate heritability for AGD resistance in Atlantic salmon has been reported previously, the mechanisms by which individuals resist the proliferative effects remain poorly understood. To gain more knowledge of this commercially important trait, we compared gill transcriptomes of two groups of Atlantic salmon, one designated putatively resistant, and one designated putatively susceptible to AGD. Utilising a 17k Atlantic salmon cDNA microarray we identified 196 transcripts that were differentially expressed between the two groups. Expression of 11 transcripts were further examined with real-time quantitative RT-PCR (qPCR) in the AGD-resistant and AGD-susceptible animals, as well as non-infected naïve fish. Gene expression determined by qPCR was in strong agreement with the microarray analysis. A large number of differentially expressed genes were involved in immune and cell cycle responses. Resistant individuals displayed significantly higher expression of genes involved in adaptive immunity and negative regulation of the cell cycle. In contrast, AGD-susceptible individuals showed higher expression of acute phase proteins and positive regulators of the cell cycle. Combined with the gill histopathology, our results suggest AGD resistance is acquired rather than innately present, and that this resistance is for the most part associated with the dysregulation of immune and cell cycle pathways. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective Ankylosing spondylitis (AS) is a highly heritable common inflammatory arthritis that targets the spine and sacroiliac joints of the pelvis, causing pain and stiffness and leading eventually to joint fusion. Although previous studies have shown a strong association of IL23R with AS in white Europeans, similar studies in East Asian populations have shown no association with common variants of IL23R, suggesting either that IL23R variants have no role or that rare genetic variants contribute. The present study was undertaken to screen IL23R to identify rare variants associated with AS in Han Chinese. Methods A 170-kb region containing IL23R and its flanking regions was sequenced in 50 patients with AS and 50 ethnically matched healthy control subjects from a Han Chinese population. In addition, the 30-kb region of peak association in white Europeans was sequenced in 650 patients with AS and 1,300 healthy controls. Validation genotyping was undertaken in 846 patients with AS and 1,308 healthy controls. Results We identified 1,047 variants, of which 729 were not found in the dbSNP genomic build 130. Several potentially functional rare variants in IL23R were identified, including one nonsynonomous single-nucleotide polymorphism (nsSNP), Gly149Arg (position 67421184 GA on chromosome 1). Validation genotyping showed that the Gly149Arg variant was associated with AS (odds ratio 0.61, P = 0.0054). Conclusion This is the first study to implicate rare IL23R variants in the pathogenesis of AS. The results identified a low-frequency nsSNP with predicted loss-of-function effects that was protectively associated with AS in Han Chinese, suggesting that decreased function of the interleukin-23 (IL-23) receptor protects against AS. These findings further support the notion that IL-23 signaling has an important role in the pathogenesis of AS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Patients with allergic diseases produce an excess of allergen-specific IgE, the specific effector molecule that triggers allergic reactions. The provocation for this excess IgE production is still uncertain. Current ideas include oligoclonal expansion of allergen-specific B cells emanating from germinal centres, activation by superantigen of a subset of B cells, or polyclonal B cells class switching to IgE due to an IL-4 predominance. Additionally, genetic elements contribute to a propensity for increased allergen-specific IgE production. The procedure of RT-PCR allows for amplification of infrequent IgE mRNA transcripts from B cells of atopic individuals, and so facilitates examination of expressed Ig cDNA sequences. Better knowledge of the molecular characteristics of IgE produced by patients with allergic diseases would elucidate the immunogenetic basis for elevated allergen-specific IgE levels. The 'immunogenetic footprint' of IgE transcripts may elucidate the origin and activation of IgE-producing B cells in allergic disease. Here we review studies of the immunogenetic features of IgE in allergic diseases, highlighting the major advances and the experimental limitations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10 -11) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10 -9), ANK3 (rs10994359, P = 2.5 × 10 -8) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10 -9).