947 resultados para T cell response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DCs) are critical in priming adaptive T-cell responses, but the effects of ageing on interactions between DCs and T cells are unclear. This study investigated the influence of ageing on the maturation of and cytokine production by human blood-enriched DCs, and the impact on T cell responses in an allogeneic mixed leucocyte reaction (MLR). DCs from old subjects (65-75y) produced significantly less TNF-α and IFN-γ than young subjects (20-30y) in response to lipopolysaccharide (LPS), but expression of maturation markers and co-stimulatory molecules was preserved. In the MLR, DCs from older subjects induced significantly restricted proliferation of young T cells, activation of CD8+ T cells and expression of IL-12 and IFN-γ in T cells compared with young DCs. T cells from older subjects responded more weakly to DC stimulation compared with young T cells, regardless of whether the DCs were derived from young or older subjects. In conclusion, the capacity of DCs to induce T cell activation is significantly impaired by ageing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Influenza virus-specific CD8+ T cells generally recognize peptides derived from conserved, internal proteins that are not subject to antibody-mediated selection pressure. Prior exposure to any one influenza A virus (H1N1) can prime for a secondary CD8+ T cell response to a serologically different influenza A virus (H3N2). The protection afforded by this recall of established CD8+ T cell memory, although limited, is not negligible. Key characteristics of primary and secondary influenza-specific host responses are probed here with recombinant viruses expressing modified nucleoprotein (NP) and acid polymerase (PA) genes. Point mutations were introduced into the epitopes derived from the NP and PA such that they no longer bound the presenting H2Db MHC class I glycoprotein, and reassortant H1N1 and H3N2 viruses were made by reverse genetics. Conventional (C57BL/6J, H2b, and Ig+/+) and Ig-/- (muMT) mice were more susceptible to challenge with the single NP [HKx31 influenza A virus (HK)-NP] and PA (HK-PA) mutants, but unlike the Ig-/- mice, Ig+/+ mice were surprisingly resistant to the HK-NP/-PA double mutant. This virus was found to promote an enhanced IgG response resulting, perhaps, from the delayed elimination of antigen-presenting cells. Antigen persistence also could explain the increase in size of the minor KbPB1703 CD8+ T cell population in mice infected with the mutant viruses. The extent of such compensation was always partial, giving the impression that any virus-specific CD8+ T cell response operates within constrained limits. It seems that the relationship between protective humoral and cellular immunity is neither simple nor readily predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we analyze the B-cell response in murine yersiniosis. To this end, we determined whether polyclonal activation of B-lymphocytes occurs during infection of susceptible (BALB/c) and resistant (C57BL/6) mice with Y. enterocolitica 0:8 and compared the immunoglobulin (Ig) isotypes produced in response to the infection by the two strains. The number of splenic cells secreting nonspecific and specific immunoglobulins was determined by ELISPOT. The presence of anti-Yersinia antibodies in serum was detected by ELISA. In both strains, the number of specific Ig-secreting cells was relatively low. Polyclonal B-cell activation was observed in both strains of mice, and the greatest activation was observed in the BALB/c mice, mainly for lgG(1)- and IgG(3)- secreting cells. The C57BL/6 mice showed a predominance of IgG(2a)-secreting cells. The peak production of anti-Yersinia IgG antibodies in the sera of BALB/c mice was seen on the 28th day after infection. The greatest increase in IgM occurred on the 14th day. A progressive increase of specific IgG antibodies was observed in C57BL/6 mice up to the 28th day after infection while IgM increased on the 21st day after infection. The production of specific IgA antibodies was not detected in either BALB/c or C57BL/6 mice. We conclude that polyclonal. activation of B lymphocytes occurs in both the Yersinia resistant and Yersinia-susceptible mice and that the more intense activation of B lymphocytes observed in the susceptible BALB/c mice does not enhance their resistance to Y. enterocolitica infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The purpose of this study was to analyze the influence of two different irradiation times with 85mW/cm(2) 830nm laser on the behavior of mouse odontoblast-like cells. Background data: The use of low-level laser therapy (LLLT) to stimulate pulp tissue is a reality, but few reports relate odontoblastic responses to irradiation in in vitro models. Methods: Odontoblast-like cells (MDPC-23) were cultivated and divided into three groups: control/nonirradiated (group 1); or irradiated with 85mW/cm(2), 830nm laser for 10 sec (0.8 J/cm(2)) (group 2); or for 50 sec (4.2 J/cm(2)) (group 3) with a wavelength of 830 nm. After 3, 7, and 10 days, it was analyzed: growth curve and cell viability, total protein content, alkaline phosphatase (ALP) activity, calcified nodules detection and quantification, collagen immunolocalization, vascular endothelial growth factor (VEGF) expression, and real-time polymerase chain reaction (PCR) for DMP1 gene. Data were analyzed by Kruskall-Wallis test (alpha = 0.05). Results: Cell growth was smaller in group 2 (p < 0.01), whereas viability was similar in all groups and at all periods. Total protein content and ALP activity increased on the 10th day with 0.8 J/cm(2) (p < 0.01), as well as the detection and quantification of mineralization nodules (p < 0.05), collagen, and VEGF expression (p < 0.01). The expression of DMP1 increased in all groups (p < 0.05) compared with control at 3 days, except for 0.8 J/cm(2) at 3 days and control at 10 days. Conclusions: LLLT influenced the behavior of odontoblast-like cells; the shorter time/smallest energy density promoted the expression of odontoblastic phenotype in a more significant way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodium chabaudi infection induces a rapid and intense splenic CD4(+) T cell response that contributes to both disease pathogenesis and the control of acute parasitemia. The subsequent development of clinical immunity to disease occurs concomitantly with the persistence of low levels of chronic parasitemia. The suppressive activity of regulatory T (T-reg) cells has been implicated in both development of clinical immunity and parasite persistence. To evaluate whether IL-2 is required to induce and to sustain the suppressive activity of T-reg cells in malaria, we examined in detail the effects of anti-IL-2 treatment with JES6-1 monoclonal antibody (mAb) on the splenic CD4(+) T cell response during acute and chronic P. chabaudi AS infection in C57BL/6 mice. JES6-1 treatment on days 0, 2 and 4 of infection partially inhibits the expansion of the CD4(+)CD25(+)Foxp3(+) cell population during acute malaria. Despite the concomitant secretion of IL-2 and expression of high affinity IL-2 receptor by large CD4(+) T cells, JES6-1 treatment does not impair effector CD4+ T cell activation and IFN-gamma production. However, at the chronic phase of the disease, an enhancement of cellular and humoral responses occurs in JES6-1-treated mice, with increased production of TNF-alpha and parasite-specific IgG2a antibodies. Furthermore, JES6-1 mAb completely blocked the in vitro proliferation of CD4(+) T cells from non-treated chronic mice, while it further increased the response of CD4(+) T cells from JES6-1-treated chronic mice. We conclude that JES6-1 treatment impairs the expansion of T-reg cell population during early P. chabaudi malaria and enhances the Th1 cell response in the late phase of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MHC class la-restricted CD8(+) T cells are important mediators of the adaptive immune response against infections caused by intracellular microorganisms. Whereas antigen-specific effector CD8(+) T cells can clear infection caused by intracellular pathogens, in some circumstances, the immune response is suboptimal and the microorganisms survive, causing host death or chronic infection. Here, we explored the cellular and molecular mechanisms that could explain why CD8(+) T-cell-mediated immunity during infection with the human protozoan parasite Trypanosoma cruzi is not optimal. For that purpose, we compared the CD8(+) T-cell mediated immune responses in mice infected with T. cruzi or vaccinated with a recombinant adenovirus expressing an immunodominant parasite antigen. Several functional and phenotypic characteristics of specific CD8(+) T cells overlapped. Among few exceptions was an accelerated expansion of the immune response in adenoviral vaccinated mice when compared to infected ones. Also, there was an upregulated expression of the apoptotic-signaling receptor CD95 on the surface of specific T cells from infected mice, which was not observed in the case of adenoviral-vaccinated mice. Most importantly, adenoviral vaccine provided at the time of infection significantly reduced the upregulation of CD95 expression and the proapoptotic phenotype of pathogen-specific CD8(+) cells expanded during infection. In parallel, infected adenovirus-vaccinated mice had a stronger CD8(+) T-cell mediated immune response and survived an otherwise lethal infection. We concluded that a suboptimal CD8(+) T-cell response is associated with an upregulation of CD95 expression and a proapoptotic phenotype. Both can be blocked by adenoviral vaccination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of vaccines directed against polysaccharide capsules of S. pneumoniae, H. influenzae and N. meningitidis have been of great importance in preventing potentially fatal infections. Bacterial capsular polysaccharides are T-cell-independent antigens that induce specific antibody response characterized by IgM immunoglobulins, with a very low IgG class switched response and lack of capability of inducing a booster response. The inability of pure polysaccharides to induce sustained immune responses has required the development of vaccines containing polysaccharides conjugated to a carrier protein, with the aim to generate T cell help. It is clear that the immunogenicity of glycoconjugate vaccines can vary depending on different factors, e.g. chemical nature of the linked polysaccharide, carrier protein, age of the target population, adjuvant used. The present study analyzes the memory B cell (MBC) response to the polysaccharide and to the carrier protein following vaccination with a glycoconjugate vaccine for the prevention of Group B streptococcus (GBS) infection. Not much is known about the role of adjuvants in the development of immunological memory raised against GBS polysaccharides, as well as about the influence of having a pre-existing immunity against the carrier protein on the B cell response raised against the polysaccharide component of the vaccine. We demonstrate in the mouse model that adjuvants can increase the antibody and memory B cell response to the carrier protein and to the conjugated polysaccharide. We also demonstrate that a pre-existing immunity to the carrier protein favors the development of the antibody and memory B cell response to subsequent vaccinations with a glycoconjugate, even in absence of adjuvants. These data provide a useful insight for a better understanding of the mechanism of action of this class of vaccines and for designing the best vaccine that could result in a productive and long lasting memory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In allogeneic hematopoietic stem cell transplantation (allo-HSCT), alloreactive T lymphocytes of donor origin mediate the beneficial graft-versus-leukemia effect but also induce graft-versus-host disease (GvHD). Since human leukocyte antigens (HLA) mismatch alleles represent major targets of alloreactive T lymphocytes, patient and donor are usually matched for the class I molecules A, B, C, and for the class II molecules DRB1 and DQB1, in order do reduce the risk of GvHD. The HLA-DPB1 locus, however, is still ignored in donor selection. Interestingly, clinical studies have demonstrated that disparities at HLA-DQB1 alleles as well as distinct HLA DPB1 mismatch constellations do not adversely affect the outcome of allo-HSCT. It has also been shown that HLA class II is predominantly expressed on hematopoietic cells under non-inflammatory conditions. Therefore, this PhD thesis focused on the application of CD4 T cells in adoptive immunotherapy of leukemias.rnIn the first part of this thesis we developed a rapid screening approach to detect T-cell reactivity of donors to single HLA class II mismatch alleles. Allo-HLA reactivity was measured in naive, memory, and entire CD4 T cells isolated from PBMC of healthy donors by flow cytometric cell sorting according to expression of the differentiation markers CD45RA, CD45RO, CD62L, and CCR7. T-cell populations were defined by a single marker to facilitate translation into a clinical-grade allo-depletion procedure. Alloreactivity to single HLA-DR/-DQ mismatch alleles was analyzed in short-term mixed lymphocyte reactions (MLR) in vitro. As standard antigen-presenting cells, we used the HLA-deficient cell line K562 upon electroporation with single HLA-DR/-DQ allele mRNA. We observed in IFN-γ ELISpot assays that allo-HLA-reactivity preferentially derived from subsets enriched for naive compared to memory T cells in healthy donors, irrespective of the HLA mismatch allele. This separation was most efficient if CD62L (P=0.008) or CD45RA (P=0.011) were used as marker. Median numbers of allo-HLA-reactive effector cells were 3.5-fold and 16.6-fold lower in CD62Lneg and CD45RAneg memory CD4 T cells than in entire CD4 T cells, respectively. In allele-specific analysis, alloreactivity to single HLA-DR alleles clearly exceeded that to HLA-DQ alleles. In terms of alloproliferation no significant difference could be observed between individual CD4 T-cell subsets. rnThe second part of this thesis dealed with the generation of allo-HLA-DQ/-DP specific CD4 T cells. Naive CD45RApos CD4 T cells isolated from healthy donor PBMC by flow cytometric cell sorting were stimulated in MLR against single allo-HLA-DQ/-DP alleles transfected into autologous mature monocyte-derived dendritic cells by mRNA electroporation. Rapidly expanding HLA-DQ/-DP mismatch reactive T cells significantly recognized and cytolysed primary acute myeloid leukemia (AML) blasts, fibroblasts (FB) and keratinocytes (KC) in IFN-γ ELISpot and 51chromium release assays if the targets carried the HLA DQ/ DP allele used for T cell priming. While AML blasts were recognized independent of pre-incubating them with IFN-γ, recognition of FB and KC required IFN-γ pre treatment. We further investigated HLA class II expression on hematopoietic and non-hematopoietic cells by flow cytometry. HLA class II was not detected on primary FB, KC, and non-malignant kidney cells, but was expressed at significant levels on primary AML blasts and B-LCL. Up-regulation of HLA class II expression was observed on all cell types after pre-incubation with IFN-γ.rnIn summary, the novel K562-HLA based MLR approach revealed that naive-depleted CD4 T-cell subsets of healthy individuals contain decreased allo-HLA reactivity in vitro. We propose the application of CD45RAneg naive-depleted CD4 T cells as memory T cell therapy, which might be beneficial for HLA-mismatched patients at high-risk of GvHD and low-risk of leukemia relapse. Memory T cells might also provide important post-transplant immune functions against infectious agents. Additionally, the screening approach could be employed as test system to detect donors which have low risks for the emergence of GvHD after allo-HSCT. In the second part of this thesis we developed a protocol for the generation of allo-HLA-DQ/-DP specific CD4 T cell lines, which could be applied in situations in which patient and donor are matched in all HLA alleles but one HLA-DQ/-DP allele with low GvHD potential. These T cells showed lytic activity to leukemia cells while presumably sparing non-hematopoietic tissues under non-inflammatory conditions. Therefore, they might be advantageous for allo-HSCT patients with advanced stage AML after reduced-intensity conditioning and T-cell depletion for the replenishment of anti-leukemic reactivity if the risk for disease relapse is high. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Allopurinol is a main cause of severe cutaneous adverse reactions (SCAR). How allopurinol induces hypersensitivity remains unknown. Pre-disposing factors are the presence of the HLA-B*58:01 allele, renal failure and possibly the dose taken. OBJECTIVE Using an in vitro model, we sought to decipher the relationship among allopurinol metabolism, HLA-B*58:01 phenotype and drug concentrations in stimulating drug-specific T cells. METHODS Lymphocyte transformation test (LTT) results of patients who had developed allopurinol hypersensitivity were analysed. We generated allopurinol or oxypurinol-specific T cell lines (ALP/OXP-TCLs) from allopurinol naïve HLA-B*58:01(+) and HLA-B*58:01(-) individuals using various drug concentrations. Their reactivity patterns were analysed by flow cytometry and (51) Cr release assay. RESULTS Allopurinol allergic patients are primarily sensitized to oxypurinol in a dose-dependent manner. TCL induction data show that both the presence of HLA-B*58:01 allele and high concentration of drug are important for the generation of drug-specific T cells. The predominance of oxypurinol-specific lymphocyte response in allopurinol allergic patients can be explained by the rapid conversion of allopurinol to oxypurinol in vivo rather than to its intrinsic immunogenicity. OXP-TCLs do not recognize allopurinol and vice versa. Finally, functional avidity of ALP/OXP-TCL is dependent on both the induction dose and HLA-B*58:01 status. CONCLUSIONS AND CLINICAL RELEVANCE This study establishes the important synergistic role of drug concentration and HLA-B*58:01 allele in the allopurinol or oxypurinol-specific T cell responses. Despite the prevailing dogma that Type B adverse drug reactions are dose independent, allopurinol hypersensitivity is primarily driven by oxypurinol-specific T cell response in a dose-dependent manner, particular in the presence of HLA-B*58:01 allele.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulatory T cells (T(reg)) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4(+)CD25(+) T(reg) were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3(+)CD25(-) T(reg). To obtain more insights in the specific function of T(reg) during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when T(reg) are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed.