999 resultados para SUB-CHANDRASEKHAR SUPERNOVAE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Context. The recent discovery of a very bright type la supernova, SNLS-03D3bb (=SN 2003fg), in the Supernova Legacy Survey (SNLS) has raised the question of whether super-Chandrasekhar-mass white-dwarf stars are needed to explain such bright explosions. Progenitors of this sort could form by mergers of pairs of rather massive white dwarfs. Binary systems of two white dwarfs in close orbit, where their total mass significantly exceeds the Chandrasekhar mass, have not yet been found. Therefore SNLS-03D3bb could establish the first clear case of a double-degenerate progenitor of a (peculiar) type la supernovae. Moreover, if this interpretation is correct, it casts some doubt on the universality of the calibration relations used to make SNe la distance indicators for cosmology. Aims. We aim to evaluate the case for a super-Chandrasekhar-mass progenitor for SNLS-03D3bb in light of previous theoretical work on super-Chandrasekhar-mass explosions. Furthermore, we propose an alternative scenario involving only a Chandrasekhar-mass progenitor. Methods. We present a theoretically motivated critical discussion of the expected observational fingerprints of super-Chandrasekharmass explosions. As an alternative, we describe a simple class of aspherical Chandrasekhar-mass models in which the products of nuclear burning are displaced from the center. We then perform simple radiative transfer calculations to predict synthetic lightcurves for one such off-center explosion model. Results. In important respects, the expected observational consequences of super-Chandrasekhar-mass explosions are not consistent with the observations of SNLS-03D3bb. We demonstrate that the lopsided explosion of a Chandrasekhar-mass white dwarf could provide a better explanation. © ESO 2007.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2002cx-like supernovae are a sub-class of sub-luminous Type Ia supernovae (SNe). Their light curves and spectra are characterized by distinct features that indicate strong mixing of the explosion ejecta. Pure turbulent deflagrations have been shown to produce such mixed ejecta. Here, we present hydrodynamics, nucleosynthesis and radiative-transfer calculations for a 3D full-star deflagration of a Chandrasekhar-mass white dwarf. Our model is able to reproduce the characteristic observational features of SN 2005hk (a prototypical 2002cx-like supernova), not only in the optical, but also in the near-infrared. For that purpose we present, for the first time, five near-infrared spectra of SN 2005hk from -0.2 to 26.6 d with respect to B-band maximum. Since our model burns only small parts of the initial white dwarf, it fails to completely unbind the white dwarf and leaves behind a bound remnant of ~1.03Mconsisting mainly of unburned carbon and oxygen, but also enriched by some amount of intermediate-mass and iron-group elements from the explosion products that fall back on the remnant.We discuss possibilities for detecting this bound remnant and how it might influence the late-time observables of 2002cx-like SNe. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Type Ia supernovae are thought to result from thermonuclear explosions of carbong'oxygen white dwarf stars. Existing models generally explain the observed properties, with the exception of the sub-luminous 1991bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but hitherto simulations have failed to produce an explosion. Here we report a simulation of the merger of two equal-mass white dwarfs that leads to a sub-luminous explosion, although at the expense of requiring a single common-envelope phase, and component masses of 0.9M. The light curve is too broad, but the synthesized spectra, red colour and low expansion velocities are all close to what is observed for sub-luminous 1991bg-like events. Although the mass ratios can be slightly less than one and still produce a sub-luminous event, the masses have to be in the range 0.83M to 0.9M. © 2010 Macmillan Publishers Limited. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a first systematic comparison of superluminous Type Ia supernovae (SNe Ia) at late epochs, including previously unpublished photometric and spectroscopic observations of SN 2007if, SN 2009dc and SNF20080723-012. Photometrically, the objects of our sample show a diverse late-time behaviour, some of them fading quite rapidly after a light-curve break at ∼ 150-200 d. The latter is likely the result of flux redistribution into the infrared, possibly caused by dust formation, rather than a true bolometric effect. Nebular spectra of superluminous SNe Ia are characterized by weak or absent [Fe III] emission, pointing at a low ejecta ionization state as a result of high densities. To constrain the ejecta and Ni masses of superluminous SNe Ia, we compare the observed bolometric light curve of SN 2009dc with synthetic model light curves, focusing on the radioactive tail after ∼60 d. Models with enough Ni to explain the light-curve peak by radioactive decay, and at the same time sufficient mass to keep the ejecta velocities low, fail to reproduce the observed light-curve tail of SN 2009dc because of too much γ -ray trapping.We instead propose a model with ∼1M of Ni and ∼2 M of ejecta, which may be interpreted as the explosion of a Chandrasekhar-mass white dwarf (WD) enshrouded by 0.6-0.7 M of C/O-rich material, as it could result from a merger of two massive C/O WDs. This model reproduces the late light curve of SN 2009dc well. A flux deficit at peak may be compensated by light from the interaction of the ejecta with the surrounding material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type Ia supernovae, sparked off by exploding white dwarfs of mass close to the Chandrasekhar limit, play the key role in understanding the expansion rate of the Universe. However, recent observations of several peculiar type Ia supernovae argue for its progenitor mass to be significantly super-Chandrasekhar. We show that strongly magnetized white dwarfs not only can violate the Chandrasekhar mass limit significantly, but exhibit a different mass limit. We establish from a foundational level that the generic mass limit of white dwarfs is 2.58 solar mass. This explains the origin of overluminous peculiar type Ia supernovae. Our finding further argues for a possible second standard candle, which has many far reaching implications, including a possible reconsideration of the expansion history of the Universe. DOI: 10.1103/PhysRevLett.110.071102

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the issue of stability of recently proposed significantly super-Chandrasekhar white dwarfs. We present stable solutions of magnetostatic equilibrium models for super-Chandrasekhar white dwarfs pertaining to various magnetic field profiles. This has been obtained by self-consistently including the effects of the magnetic pressure gradient and total magnetic density in a general relativistic framework. We estimate that the maximum stable mass of magnetized white dwarfs could be more than 3 solar mass. This is very useful to explain peculiar, overluminous type Ia supernovae which do not conform to the traditional Chandrasekhar mass-limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topic of magnetized super-Chandrasekhar white dwarfs is in the limelight, particularly in the last few years, since our proposal of their existence. By full-scale general relativistic magnetohydrodynamic (GRMHD) numerical analysis, we confirm in this work the existence of stable, highly magnetized, significantly super-Chandrasekhar white dwarfs with mass more than 3 solar mass. While a poloidal field geometry renders the white dwarfs oblate, a toroidal field makes them prolate retaining an overall quasi-spherical shape, as speculated in our earlier work. These white dwarfs are expected to serve as the progenitors of over-luminous type Ia supernovae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we extend the exploration of significantly super-Chandrasekhar magnetized white dwarfs by numerically computing axisymmetric stationary equilibria of differentially rotating magnetized polytropic compact stars in general relativity (GR), within the ideal magnetohydrodynamic regime. We use a general relativistic magnetohydrodynamic (GRMHD) framework that describes rotating and magnetized axisymmetric white dwarfs, choosing appropriate rotation laws and magnetic field profiles (toroidal and poloidal). The numerical procedure for finding solutions in this framework uses the 3 + 1 formalism of numerical relativity, implemented in the open source XNS code. We construct equilibrium sequences by varying different physical quantities in turn, and highlight the plausible existence of super-Chandrasekhar white dwarfs, with masses in the range of 2-3 solar mass, with central (deep interior) magnetic fields of the order of 10(14) G and differential rotation with surface time periods of about 1-10 s. We note that such white dwarfs are candidates for the progenitors of peculiar, overluminous Type Ia supernovae, to which observational evidence ascribes mass in the range 2.1-2.8 solar mass. We also present some interesting results related to the structure of such white dwarfs, especially the existence of polar hollows in special cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stars with a core mass greater than about 30 M become dynamically unstable due to electron-positron pair production when their central temperature reaches 1.5-2.0 x 109 0K. The collapse and subsequent explosion of stars with core masses of 45, 52, and 60 M is calculated. The range of the final velocity of expansion (3,400 – 8,500 km/sec) and of the mass ejected (1 – 40 M) is comparable to that observed for type II supernovae.

An implicit scheme of hydrodynamic difference equations (stable for large time steps) used for the calculation of the evolution is described.

For fast evolution the turbulence caused by convective instability does not produce the zero entropy gradient and perfect mixing found for slower evolution. A dynamical model of the convection is derived from the equations of motion and then incorporated into the difference equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. The aim of this paper is to discuss the nature of two type Ic supernovae SN 2007bg and SN 2007bi and their host galaxies. Both supernovae were discovered in wide-field, non-targeted surveys and are found to be associated with sub-luminous blue dwarf galaxies identified in SDSS images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results for a suite of 14 three-dimensional, high-resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN Ia simulations with detailed isotopic yield information. As such, it may serve as a data base for Chandrasekhar-mass delayed-detonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ aphysically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ the deflagration-to-detonation transition probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300 and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with a central density of 2.9 × 10 g cm, as well as one high central density (5.5 × 10 g cm) and one low central density (1.0 × 10 g cm) rendition of the 100 ignition kernel configuration. For each simulation, we determined detailed nucleosynthetic yields by postprocessing10 tracer particles with a 384 nuclide reaction network. All delayed-detonation models result in explosions unbinding thewhite dwarf, producing a range of 56Ni masses from 0.32 to 1.11M. As a general trend, the models predict that the stableneutron-rich iron-group isotopes are not found at the lowest velocities, but rather at intermediate velocities (~3000×10 000 km s) in a shell surrounding a Ni-rich core. The models further predict relatively low-velocity oxygen and carbon, with typical minimum velocities around 4000 and 10 000 km s, respectively. © 2012 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a companion paper, Seitenzahl et al. have presented a set of three-dimensional delayed detonation models for thermonuclear explosions of near-Chandrasekhar-mass white dwarfs (WDs). Here,we present multidimensional radiative transfer simulations that provide synthetic light curves and spectra for those models. The model sequence explores both changes in the strength of the deflagration phase (which is controlled by the ignition configuration in our models) and the WD central density. In agreement with previous studies, we find that the strength of the deflagration significantly affects the explosion and the observables. Variations in the central density also have an influence on both brightness and colour, but overall it is a secondary parameter in our set of models. In many respects, the models yield a good match to the observed properties of normal Type Ia supernovae (SNe Ia): peak brightness, rise/decline time-scales and synthetic spectra are all in reasonable agreement. There are, however, several differences. In particular, the models are systematically too red around maximum light, manifest spectral line velocities that are a little too high and yield I-band light curves that do not match observations. Although some of these discrepancies may simply relate to approximations made in the modelling, some pose real challenges to the models. If viewed as a complete sequence, our models do not reproduce the observed light-curve width- luminosity relation (WLR) of SNe Ia: all our models show rather similar B-band decline rates, irrespective of peak brightness. This suggests that simple variations in the strength of the deflagration phase in Chandrasekhar-mass deflagration-to-detonation models do not readily explain the observed diversity of normal SNe Ia. This may imply that some other parameter within the Chandrasekhar-mass paradigm is key to the WLR, or that a substantial fraction of normal SNe Ia arise from an alternative explosion scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present grizP1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields w = -1.120+0.360-0.206(Stat)+0.2690.291(Sys). When combined with BAO+CMB(Planck)+H0, the analysis yields ΩM = 0.280+0.0130.012 and w = -1.166+0.072-0.069 including all identified systematics. The value of w is inconsistent with the cosmological constant value of -1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H0 constraint, though it is strongest when including the H0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find w = -1.124+0.083-0.065, which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ∼three times as many SNe should provide more conclusive results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 ≲ z ≲ 1.6, and is the first comprehensive host galaxy study of this specific subclass of cosmic explosions. Combining the multi-band photometry and emission-line measurements, we determine the luminosities, stellar masses, star formation rates, and metallicities. We find that, as a whole, the hosts of SLSNe are a low-luminosity (〈MB 〉 ≈ -17.3 mag), low stellar mass (〈M〉 ≈ 2 × 108 M) population, with a high median specific star formation rate (〈sSFR〉 ≈ 2 Gyr-1). The median metallicity of our spectroscopic sample is low, 12 + log (O/H) ≈ 8.35 ≈ 0.45 Z, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR, and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly spinning magnetar in SLSNe and an accreting black hole in LGRBs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Binary stellar evolution calculations predict thatChandrasekhar-mass carbon/oxygen white dwarfs (WDs) show a radiallyvarying profile for the composition with a carbon depleted core. Manyrecent multi-dimensional simulations of Type Ia supernovae (SNe Ia),however, assume the progenitor WD has a homogeneous chemicalcomposition.
Aims: In this work, we explore the impact ofdifferent initial carbon profiles of the progenitor WD on the explosionphase and on synthetic observables in the Chandrasekhar-mass delayeddetonation model. Spectra and light curves are compared to observationsto judge the validity of the model.
Methods: The explosion phaseis simulated using the finite volume supernova code Leafs, which isextended to treat different compositions of the progenitor WD. Thesynthetic observables are computed with the Monte Carlo radiativetransfer code Artis. Results: Differences in binding energies ofcarbon and oxygen lead to a lower nuclear energy release for carbondepleted material; thus, the burning fronts that develop are weaker andthe total nuclear energy release is smaller. For otherwise identicalconditions, carbon depleted models produce less 56Ni.Comparing different models with similar 56Ni yields showslower kinetic energies in the ejecta for carbon depleted models, butonly small differences in velocity distributions and line velocities inspectra. The light curve width-luminosity relation (WLR) obtained formodels with differing carbon depletion is roughly perpendicular to theobserved WLR, hence the carbon mass fraction is probably only asecondary parameter in the family of SNe Ia.
Tables 3 and 4 are available in electronic form at http://www.aanda.org