949 resultados para Respiratory System
Resumo:
Fractional order modeling of biological systems has received significant interest in the research community. Since the fractal geometry is characterized by a recurrent structure, the self-similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. To demonstrate the link between the recurrence of the respiratory tree and the appearance of a fractional-order model, we develop an anatomically consistent representation of the respiratory system. This model is capable of simulating the mechanical properties of the lungs and we compare the model output with in vivo measurements of the respiratory input impedance collected in 20 healthy subjects. This paper provides further proof of the underlying fractal geometry of the human lungs, and the consequent appearance of constant-phase behavior in the total respiratory impedance.
Resumo:
This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure-volume curves and the pseudophase-plane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.
Resumo:
Le but de cette étude était d’évaluer les qualifications de performance du système FlexiWare® chez le rat male Sprague Dawley et le singe Cynomolgus éveillés, ainsi que chez le chien Beagle éveillé et anesthésié, suite à l’administration de produits ayant une activité pharmacologique connue. Les produits utilisés incluaient l’albutérol administré par inhalation, la méthacholine, et le rémifentanil administrés par voie intraveineuse. Une solution saline administré par voie intraveneuse, a été utilisée comme substance témoin. Différentes variables ont servi à évaluer la réponse des animaux (rats, chien, singe). Ces dernières comprenaient la fréquence respiratoire (RR), le volume courant (TV), la ventilation minute (MV). Des paramètres additionnels ont été évalués chez le rat, soit les temps d’inspiration (IT) et d’expiration (ET), le temps du pic de débit expiratoire, les pics de débits inspiratoire et expiratoire, le ratio inspiratoire:expiratoire (I:E), le ratio inspiratoire sur respiration totale (I:TB), et l’écoulement expiratoire moyen (EF50). Les résultats obtenus ont démontré que le système FlexiWare® était suffisamment sensible et spécifique pour dépister, chez les espèces animales utilisées, les effets bronchodilateur, bronchoconstricteur et dépresseur central des substances testées. Il pourrait faire partie des méthodes (ICH 2000) utilisées en pharmacologie de sécurité lors de l’évaluation de substances pharmacologiques sur le système respiratoire des animaux de laboratoire. Les espèces animales utilisées ont semblé s’adapter aisément aux procédures de contention. Les paramètres évalués, RR, TV et MV ont permis de caractériser la réponse des animaux suite à l’administration de produits pharmacologiques à effets connus, judicieusement complétés par les variables de débit. L’ajout de paramètres du temps n’était pas primordiale pour détecter les effets des drogues, mais offre des outils complémentaires d’interpréter les changements physiologiques. Cependant, chez le rat conscient, la période d’évaluation ne devrait pas s’étendre au-delà d’une période de deux heures post traitement. Ces études constituent une évaluation des qualifications de performance de cet appareil et ont démontré de manière originale, la validation concurrentielle, en terme de précision (sensibilité et spécificité) et fiabilité pour différentes variables et sur différentes espèces.
Resumo:
Respiratory syncytial virus (RSV) bronchiolitis is the leading cause of lower respiratory tract infection, and the most frequent reason for hospitalization among infants throughout the world. In addition to the acute consequences of the disease, RSV bronchiolitis in early childhood is related to further development of recurrent wheezing and asthma. Despite the medical and economic burden of the disease, therapeutic options are limited to supportive measures, and mechanical ventilation in severe cases. Growing evidence suggests an important role of changes in pulmonary surfactant content and composition in the pathogenesis of severe RSV bronchiolitis. Besides the well-known importance of pulmonary surfactant in maintenance of pulmonary homeostasis and lung mechanics, the surfactant proteins SP-A and SP-D are essential components of the pulmonary innate immune system. Deficiencies of such proteins, which develop in severe RSV bronchiolitis, may be related to impairment in viral clearance, and exacerbated inflammatory response. A comprehensive understanding of the role of the pulmonary surfactant in the pathogenesis of the disease may help the development of new treatment strategies. We conducted a review of the literature to analyze the evidences of pulmonary surfactant changes in the pathogenesis of severe RSV bronchiolitis, its relation to the inflammatory and immune response, and the possible role of pulmonary surfactant replacement in the treatment of the disease. Pediatr Pulmonol. 2011; 46:415-420. (c) 2010 Wiley-Liss, Inc.
Resumo:
At surgical depths of anesthesia, inhalational anesthetics cause a loss of motor response to painful stimuli (i.e., immobilization) that is characterized by profound inhibition of spinal motor circuits. Yet, although clearly depressed, the respiratory motor system continues to provide adequate ventilation under these same conditions. Here, we show that isoflurane causes robust activation of CO(2)/pH-sensitive, Phox2b-expressing neurons located in the retrotrapezoid nucleus (RTN) of the rodent brainstem, in vitro and in vivo. In brainstem slices from Phox2b-eGFP mice, the firing of pH-sensitive RTN neurons was strongly increased by isoflurane, independent of prevailing pH conditions. At least two ionic mechanisms contributed to anesthetic activation of RTN neurons: activation of an Na(+)-dependent cationic current and inhibition of a background K(+) current. Single-cell reverse transcription-PCR analysis of dissociated green fluorescent protein-labeled RTN neurons revealed expression of THIK-1 (TWIK-related halothane-inhibited K(+) channel, K(2P)13.1), a channel that shares key properties with the native RTN current (i.e., suppression by inhalational anesthetics, weak rectification, inhibition by extracellular Na(+), and pH-insensitivity). Isoflurane also increased firing rate of RTN chemosensitive neurons in urethane-anesthetized rats, again independent of CO(2) levels. In these animals, isoflurane transiently enhanced activity of the respiratory system, an effect that was most prominent at low levels of respiratory drive and mediated primarily by an increase in respiratory frequency. These data indicate that inhalational anesthetics cause activation of RTN neurons, which serve an important integrative role in respiratory control; the increased drive provided by enhanced RTN neuronal activity may contribute, in part, to maintaining respiratory motor activity under immobilizing anesthetic conditions.
Resumo:
Objective: To evaluate maximal respiratory pressures, pulmonary volumes and capacities and exercise functional capacity in pregnant women with preeclampsia. Method: Primigravid women with preeclampsia and healthy primigravid women were evaluated by means of manovacuometry, spirometry and the 6-minute walk test. Results: The group with preeclampsia showed higher minute ventilation and lower forced vital capacity and exercise tolerance. The presence of preeclampsia and forced vital capacity were predictors in the six-minute walk test. Conclusion: Preeclampsia showed significant alterations in the respiratory system and was associated with lower exercise tolerance; however, it did not affect respiratory muscle functions.
Resumo:
The diurnal tegu lizard Tupinambis merianae exhibits a marked circadian variation in metabolism that is characterized by the significant increase in metabolism during part of the day. These increases in metabolic rate, found in the fasting animal, are absent during the first 2 d after meal ingestion but reappear subsequently, and the daily increase in metabolic rate is added to the increase in metabolic rate caused by digestion. During the first 2 d after feeding, priority is given to digestion, while on the third and following days, the metabolic demands are clearly added to each other. This response seems to be a regulated response of the animal, which becomes less active after food ingestion, rather than an inability of the respiratory system to support simultaneous demands at the beginning of digestion. The body cavity of Tupinambis is divided into two compartments by a posthepatic septum (PHS). Animals that had their PHS surgically removed showed no significant alteration in the postprandial metabolic response compared to tegus with intact PHS. The maximal metabolic increment during digestion, the relative cost of meal digestion, and the duration of the process were virtually unaffected by the removal of the PHS.
Resumo:
The effects of deltamethrin on the respiratory metabolism of Gymnostreptus olivaceus and Plusioporus setiger were investigated. Acetone solutions corresponding to half the LD50 values, i.e., 20 μg.g-1g for G. olivaceus and 4.40 μg.g-1 for P. setiger, were used. Metabolism was determined with a Warburg respirometer at 25°C. Respirometric measurements were performed 1, 3 and 6 hours after administration of the pyrethroid to the same groups of millipedes. After 24 hours, daily respirometric measurements lasting 1 hour each were made on different millipede groups for a period of 10 days. Significant differences were detected only between the groups treated with the pyrethroid and the two control groups. In G. olivaceus, respiratory rates increased by about 1.65-fold compared to normal immediately after administration of the pyrethroid, followed by a gradual decrease up to 72 hours and a return to normal levels thereafter. In P. setiger the increase was about 1.1-fold compared to normal, with a decrease up to 96 hours and a return to normal thereafter. Although increased oxygen consumption was observed, a detoxification process occurred in both species, so that the possible metabolism of the pyrethroid may justify the low toxicity of deltamethrin for G. olivaceus and P. setiger.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND: Acquired immunodeficiency syndrome (AIDS) is a pandemic disease commonly associated with respiratory infections, hypoxemia, and death. Noninvasive PEEP has been shown to improve hypoxemia. In this study, we evaluated the physiologic effects of different levels of noninvasive PEEP in hypoxemic AIDS patients. METHODS: Thirty AIDS patients with acute hypoxemic respiratory failure received a randomized sequence of noninvasive PEEP (5, 10, or 15 cm H2O) for 20 min. PEEP was provided through a facial mask with pressure-support ventilation (PSV) of 5 cm H2O and an F-IO2, of 1. Patients were allowed to breathe spontaneously for a 20-min washout period in between each PEEP trial. Arterial blood gases and clinical variables were recorded after each PEEP treatment. RESULTS: The results indicate that oxygenation improves linearly with increasing levels of PEEP. However, oxygenation levels were similar regardless of the first PEEP level administered (5, 10, or 15 cm H2O), and only the subgroup that received an initial treatment of the lowest level of PEEP (ie, 5 cm H2O) showed further improvements in oxygenation when higher PEEP levels were subsequently applied. The P-aCO2, also increased in response to PEEP elevation, especially with the highest level of PEEP (ie, 15 cm H2O). PSV of 5 cm H2O use was associated with significant and consistent improvements in the subjective sensations of dyspnea and respiratory rate reported by patients treated with any level of PEEP (from 0 to 15 cm H2O). CONCLUSIONS: AIDS patients with hypoxemic respiratory failure improve oxygenation in response to a progressive sequential elevation of PEEP (up to 15 cm H2O). However, corresponding elevations in P-aCO2, limit the recommended level of PEEP to 10 cm H2O. At a level of 5 cm H2O, PSV promotes an improvement in the subjective sensation of dyspnea regardless of the PEEP level employed.
Resumo:
Background: Inspiratory muscle training (IMT) has been shown to increase diaphragm thickness. We evaluated the effect of IMT on mid-respiratory pressure (MRP) in patients with gastroesophageal reflux disease (GERD) and hypotensive lower esophageal sphincter (LES), and compared the results with a sham group. Methods: Twenty consecutive patients (progressive loading group) and 9 controls (sham group) were included. All patients had end expiratory pressure (EEP) between 5 and 10 mmHg, underwent esophageal manometry and pulmonary function tests before and after 8 weeks of training, and used a threshold IMT twice daily. The threshold IMT was set at 30% of the maximal inspiratory pressure for the progressive loading group; while, the threshold for sham-treated patients was set at 7 cmH(2)O for the whole period. Results: There was an increase in MRP in 15 (75%) patients in the progressive loading group, with an average gain of 46.6% (p<0.01), and in six (66%) patients in the sham group with a mean increase of 26.2% (p<0.01). However, there was no significant difference between the groups (p = 0.507). The EEP also increased compared with measurements before training (p<0.01), but it did not differ between groups (p = 0.727). Conclusion: IMT increased LES pressure in patients with GERD, in both the treatment and sham groups, after an eight-week program. Although there was no statistically significant difference between groups, suggesting the pressure increase in LES occurs regardless of the resistance load of the threshold IMT. These findings need to be confirmed in further studies with a larger sample. Registration number: 0922/09. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To compare two methods of respiratory inductive plethysmography (RIP) calibration in three different positions. Methods: We evaluated 28 healthy subjects (18 women and 10 men), with a mean age of 25.4 +/- 3.9 years. For all of the subjects, isovolume maneuver calibration (ISOCAL) and qualitative diagnostic calibration (QDC) were used in the orthostatic, sitting, and supine positions. In order to evaluate the concordance between the two calibration methods, we used ANOVA and Bland-Altman plots. Results: The values of the constant of proportionality (X) were significantly different between ISOCAL and QDC in the three positions evaluated: 1.6 +/- 0.5 vs. 2.0 +/- 1.2, in the supine position, 2.5 +/- 0.8 vs. 0.6 +/- 0.3 in the sitting position, and 2.0 +/- 0.8 vs. 0.6 +/- 0.3 in the orthostatic position (p < 0.05 for all). Conclusions: Our results suggest that QDC is an inaccurate method for the calibration of RIP. The K values obtained with ISOCAL reveal that RIP should be calibrated for each position evaluated.
Resumo:
SETTING: Respiratory mortality rates are declining in several countries, including Brazil; however, the effect of socio-economic indicators and sex is unclear. OBJECTIVE: To identify differences in mortality trends according to income and sex in the city of Sao Paulo, Brazil. DESIGN: We performed a time-trend analysis of all respiratory diseases, including chronic obstructive pulmonary disease (COPD), lung cancer and tuberculosis, using Joinpoint regression comparing high, middle and low household income levels from 1996 to 2010. RESULTS: The annual per cent change (APC) and 95% confidence intervals (95%CIs) for death rates from all respiratory disease in men in high-income areas was -1.1 (95%CI -2.7 to 0.5) in 1996-2002 and -4.3 (95%CI -5.9 to -2.8) in 2003-2009. In middle- and low-income areas, the decline was respectively -1.5 (95%CI -2.2 to -0.7) and -1.4 (95%CI -1.9 to -0.8). For women, the APC declined in high-income (-1.0, 95%CI -1.9 to -0.2) and low-income areas (0.8, 95%CI -1.3 to -0.2), but not in middle-income areas (-0.5, 95%CI -1.4 to 0.3) from 1996 to 2010. CONCLUSION: Death rates due to COPD and all respiratory disease declined more consistently in men from high-income areas. Mortality due to lung cancer decreased in men, but increased in women in middle- and low-income areas.
Resumo:
REASONS FOR PERFORMING STUDY: The horse owner assessed respiratory signs index (HOARSI-1-4, healthy, mildly, moderately and severely affected, respectively) is based on owner-reported clinical history and has been used for the investigation of recurrent airway obstruction (RAO) genetics utilising large sample sizes. Reliable phenotype identification is of paramount importance in genetic studies. Owner reports of respiratory signs have shown good repeatability, but the agreement of HOARSI with an in-depth examination of the lower respiratory tract has not been investigated. OBJECTIVES: To determine the correlation of HOARSI grades 3/4 with the characteristics of RAO and of HOARSI-2 with the characteristics of inflammatory airway disease. Further, to test whether there are phenotypic differences in the manifestation of lung disease between families. METHODS: Seventy-one direct offspring of 2 RAO-affected Warmblood stallions (33 from the first family, 38 from the second) were graded as HOARSI-1-4 and underwent a clinical examination of the respiratory system, arterial blood gas analysis, endoscopic mucus scoring, cytology of tracheobronchial secretion (TBS) and bronchoalveolar lavage fluid (BALF), and clinical assessment of airway reactivity to methacholine chloride. RESULTS: HOARSI-3/4 animals in clinical exacerbation showed signs consistent with RAO: coughing, nasal discharge, abnormal lung sounds and breathing pattern as well as increased numbers of neutrophils in TBS and BALF, excessive mucus accumulation and airway hyper-responsiveness to methacholine. HOARSI-3/4 horses in remission only had increased amounts of tracheal mucus and TBS neutrophil percentages. Clinical phenotypes were not significantly different between the 2 families. CONCLUSIONS AND CLINICAL RELEVANCE: HOARSI reliably identifies RAO-affected horses in our population.
Resumo:
BACKGROUND: The time course of impairment of respiratory mechanics and gas exchange in the acute respiratory distress syndrome (ARDS) remains poorly defined. We assessed the changes in respiratory mechanics and gas exchange during ARDS. We hypothesized that due to the changes in respiratory mechanics over time, ventilatory strategies based on rigid volume or pressure limits might fail to prevent overdistension throughout the disease process. METHODS: Seventeen severe ARDS patients {PaO2/FiO2 10.1 (9.2-14.3) kPa; 76 (69-107) mmHg [median (25th-75th percentiles)] and bilateral infiltrates} were studied during the acute, intermediate, and late stages of ARDS (at 1-3, 4-6 and 7 days after diagnosis). Severity of lung injury, gas exchange, and hemodynamics were assessed. Pressure-volume (PV) curves of the respiratory system were obtained, and upper and lower inflection points (UIP, LIP) and recruitment were estimated. RESULTS: (1) UIP decreased from early to established (intermediate and late) ARDS [30 (28-30) cmH2O, 27 (25-30) cmH2O and 25 (23-28) cmH2O (P=0.014)]; (2) oxygenation improved in survivors and in patients with non-pulmonary etiology in late ARDS, whereas all patients developed hypercapnia from early to established ARDS; and (3) dead-space ventilation and pulmonary shunt were larger in patients with pulmonary etiology during late ARDS. CONCLUSION: We found a decrease in UIP from acute to established ARDS. If applied to our data, the inspiratory pressure limit advocated by the ARDSnet (30 cmH2O) would produce ventilation over the UIP, with a consequent increased risk of overdistension in 12%, 43% and 65% of our patients during the acute, intermediate and late phases of ARDS, respectively. Lung protective strategies based on fixed tidal volume or pressure limits may thus not fully avoid the risk of lung overdistension throughout ARDS.