923 resultados para Population Density


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the causal mechanisms promoting group formation in carnivores has been widely investigated, particularly how fitness components affect group formation. Population density may affect the relative benefits of natal philopatry versus dispersal. Density effects on individual behavioral strategies have previously been studied through comparisons of different populations, where differences could be confounded by between-site effects. We used a single population of red foxes (Vulpes vulpes) in the city of Bristol, UK, that underwent a natural perturbation in density to compare key changes in 1) group structure, 2) within-group relatedness, 3) mating system, 4) dispersal, and 5) dominance attainment. At high densities (19.6-27.6 adults km(-2)), group sex ratios were equal and included related and unrelated individuals. At low densities (4.0-5.5 adults km(-2)), groups became female biased and were structured around philopatric females. However, levels of within-group relatedness were unchanged. The genetic mating patterns changed with no instances of multiple-paternity litters and a decline in the frequency of extrapair litters of cubs from <= 77% to <= 38%. However, the number of genetically monogynous groups did not differ between periods. Dispersal was male biased at both high and low densities. At high density, most dominant males in the study groups appeared to have gained dominance after dispersing, but natal philopatry was an equally successful strategy at low density; conversely, most dominant females were philopatric individuals at both high and low densities. These results illustrate how density may alter behavioral strategies such as mating patterns and how this, in turn, alters group structure in a single population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Very few studies have analyzed the dependence of population growth rate on population density, and even fewer have considered interaction effects of density and other stresses, such as exposure to toxic chemicals. Yet without such studies we cannot know whether chemicals harmful at low density have effects on carrying capacity or, conversely, whether chemicals reducing carrying capacity are also harmful at low density, impeding a population's capacity to recover from disturbance. This study examines the combined effects of population density and a toxicant (fluoranthene) on population growth rate (pgr) and carrying capacity using the deposit-feeding polychaete Capitella sp. I as a test organism. Populations were initiated with a stable age distribution, and population density and age/size distribution were followed during a period of 28 wk. Fluoranthene (FLU), population density, and their interaction influenced population growth rate. Population growth rate declined linearly with the logarithm of population biomass, but the slope of the relationship was steeper for the control populations than for populations exposed to 50 mug FLU/(g sediment dry mass). Populations exposed to 150 mug FLU/(g sediment dry mass) went extinct after 8 wk of exposure. Despite concerns that toxicant effects would be exacerbated at high density, we found the reverse to be the case, and effects of fluoranthene on population growth rate were much reduced in the region of carrying capacity. Fluoranthene did. reduce carrying capacity by 46%, and this could haven important implications for interacting species and/or sediment biogeochemical processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2008/1007/thumbnail.jpg

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The population density of horn flies was evaluated in the year 1998 in the municipality of Aracatuba, São Paulo Brazil, in relation to temperature and rainfall conditions. Two lots of 30 Nellore steers (Bos indicus) were used which had no insecticidal treatment and were naturally infested with horn flies. The infestations were assessed by two counting methods, i.e., the traditional estimate method and the filming method. The highest fly frequencies were recorded in spring, summer, autumn and the lowest frequencies were recorded in winter. The increase in fly number was positively correlated (P < 0.05) with rainfall. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of Functional Urban Regions (FURs), also called Metropolitan Regions (MRs), is not simple. It is clear, though, that they are not simply a combination of adjacent municipalities or areas. Different methods can be used for their definition. However, especially in developing countries, the application of some methods is not possible, due to the unavailability of detailed data. Alternative approaches have been developed based on spatial analysis methods and using variables extracted from available data. The objective of this study is to compare the results of two spatial analysis methods exploring two variables: population density and an indicator of transport infrastructure supply. The first method regards Exploratory Spatial Data Analyses tools, which define uniform regions based on specific variables. The second method used the same variables and the spatial analysis technique available in the computer program SKATER - Spatial 'K'luster Analysis by Tree Edge Removal. Assuming that those classifications of regions with similar characteristics can be used for identifying potential FURS, the results of all analyses were compared with one another and with the 'official' MR. A combined approach was also considered for comparison, but none of the results match the existing MR boundaries, what challenges the official definitions. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moose Alces alces gigas in Alaska, USA, exhibit extreme sexual dimorphism, with adult males possessing large, elaborate antlers. Antler size and conformation are influenced by age, nutrition and genetics, and these bony structures serve to establish social rank and affect mating success. Population density, combined with anthropogenic effects such as harvest, is thought to influence antler size. Antler size increased as densities of moose decreased, ostensibly a density-dependent response related to enhanced nutrition at low densities. The vegetation type where moose were harvested also affected antler size, with the largest-antlered males occupying more open habitats. Hunts with guides occurred in areas with low moose density, minimized hunter interference and increased rates of success. Such hunts harvested moose with larger antler spreads than did non-guided hunts. Knowledge and abilities allowed guides to satisfy demands of trophy hunters, who are an integral part of the Alaskan economy. Heavy harvest by humans was also associated with decreased antler size of moose, probably via a downward shift in the age structure of the population resulting in younger males with smaller antlers. Nevertheless, density-dependence was more influential than effects of harvest on age structure in determining antler size of male moose. Indeed, antlers are likely under strong sexual selection, but we demonstrate that resource availability influenced the distribution of these sexually selected characters across the landscape. We argue that understanding population density in relation to carrying capacity (K) and the age structure of males is necessary to interpret potential consequences of harvest on the genetics of moose and other large herbivores. Our results provide researchers and managers with a better understanding of variables that affect the physical condition, antler size, and perhaps the genetic composition of populations, which may be useful in managing and modeling moose populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We estimated the population density of the Helmeted Curassow (Pauxi pauxi) in Tama National Park (TNP) Colombia, using visual counts between December 2006 and December 2008. We used six line transects (1 km each) equitably distributed in a natural forest between 800 and 1,200 m asl in the southern part of the park. The sampling effort was 588 hrs with a total distance of 490 km, a detection rate of 0.06 records/hr, and an encounter rate of 0.08 individuals/km. Only solitary individuals were recorded (n = 40); the estimated density was 4.8 individuals/km(2). Most detections occurred in the lower strata of the forest (floor and sub-canopy) where hunters take advantage of curassows in the lower strata for successful harvest. The southern sector of TNP becomes important in the dry season. Our study suggests a large population is in TNP, but harvesting activities including removal of eggs, chicks, and juveniles, and hunting adults are affecting the reproductive rate and population of the species. Received 6 June 2011. Accepted 2 February 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this experiment was to evaluate tiller population density and the dynamics of the tillering process in marandu palisade grass subjected to strategies of rotational stocking management and nitrogen fertilization. Treatments corresponded to combinations between two targets of pre-grazing conditions (sward surface height of 25 and 35 cm) and two rates of nitrogen application (50 and 200 kg ha-1 year-1), and were allocated to experimental units according to a 2 x 2 factorial arrangement in a randomised complete block design, with four replications. The following response variables were studied: initial (TPDi), intermediate (TPDm) and final (TPDf) tiller population density as well as the rates of tiller appearance (TAR) and death (TDR) and the tiller population stability index (SI). TPDi was similar to all treatments, with differences in tiller population density becoming more pronounced as the experiment progressed, resulting in larger TPDf on swards managed at 25 cm pre-grazing height. Tiller death was larger on swards managed at 35 cm, with differences in tiller appearance being recorded only from February 2010 onwards. Stability of tiller population was higher on swards managed at 25 cm pre-grazing height. Overall, there was no effect of nitrogen on the studied variables, and the most adequate grazing strategy corresponded to the pre-grazing height of 25 cm, regardless of the nitrogen application rate used.