905 resultados para Membrane Proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A label-free DNA aptamer-based impedance biosensor for the detection of E. coli outer membrane proteins (OMPs) was developed. Two single stranded DNA sequences were tested as recognition elements and compared. The aptamer capture probes were immobilized, with and without 6-mercapto-1-hexanol (MCH) on a gold electrode. Each step of the modification process was characterized by Faradaic impedance spectroscopy (FIS). A linear relationship between the electron-transfer resistance (Ret) and E. coli OMPs concentration was demonstrated in a dynamic detection range of 1 × 10−7–2 × 10−6 M. Moreover, the aptasensor showed selectivity despite the presence of other possible water contaminates and could be regenerated under low pH condition. The developed biosensor shows great potential to be incorporated in a biochip and used for in situ detection of E. coli OMPs in water samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of excitation energy between the two photosystems (PSII and PSI) of photosynthesis is regulated by the light state transition. Three models have been proposed for the mechanism of the state transition in phycobilisome (PBS) containing organisms, two involving protein phosphorylation. A procedure for the rapid isolation of thylakoid membranes and PBS fractions from the cyanobacterium Synechococcus m. PCC 6301 in light state 1 and light state 2 was developed. The phosphorylation of thylakoid and soluble proteins rapidly isolated from intact cells in state 1 and state 2 was investigated. 77 K fluorescence emission spectra revealed that rapidly isolated thylakoid membranes retained the excitation energy distribution characteristic of intact cells in state 1 and state 2. Phosphoproteins were identified by gel electrophoresis of both thylakoid membrane and phycobilisome fractions isolated from cells labelled with 32p orthophosphate. The results showed very close phosphoprotein patterns for either thylakoid membrane or PBS fractions in state 1 and state 2. These results do not support proposed models for the state transition which required phosphorylation of PBS or thylakoid membrane proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes several important advancements in the understanding of the assembly of outer membrane proteins of Gram-negative bacteria like Escherichia coli. A first study was performed to identify binding regions in the trimeric chaperone Skp for outer membrane proteins. Skp is known to facilitate the passage of unfolded outer membrane proteins (OMPs) through the periplasm to the outer membrane (OM). A gene construct named “synthetic chaperone protein (scp)” gene was used to express a fusion protein (Scp) into the cytoplasm of E. coli. The scp gene was used as a template to design mutants of Scp suitable for structural and functional studies using site-directed spectroscopy. Fluorescence resonance energy transfer (FRET) was used to identify distances in Skp-OmpA complexes that separate regions in Scp and in outer membrane protein A (OmpA) from E. coli. For this study, single cysteine (Cys) mutants and single Cys - single tryptophan (Trp) double mutants of Scp were prepared. For FRET experiments, the cysteines were labeled with the tryptophan fluorescence energy acceptor IAEDANS. Single Trp mutants of OmpA were used as fluorescence energy donors. In the second part of this thesis, the function of BamD and the structure of BamD-Scp complexes were examined. BamD is an essential component of the β-barrel assembly machinery (BAM) complex of the OM of Gram-negative bacteria. Fluorescence spectroscopy was used to probe the interactions of BamD with lipid membranes and to investigate the interactions of BamD with possible partner proteins from the periplasm and from the OM. A range of single cysteine (Cys) and single tryptophan (Trp) mutants of BamD were prepared. A very important conclusion from the extensive FRET study is that the essential lipoprotein BamD interacts and binds to the periplasmic chaperone Skp. BamD contains tetratrico peptide repeat (TPR) motifs that are suggested to serve as docking sites for periplasmic chaperones such as Skp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platelets are small blood cells vital for hemostasis. Following vascular damage, platelets adhere to collagens and activate, forming a thrombus that plugs the wound and prevents blood loss. Stimulation of the platelet collagen receptor glycoprotein VI (GPVI) allows recruitment of proteins to receptor-proximal signaling complexes on the inner-leaflet of the plasma membrane. These proteins are often present at low concentrations; therefore, signaling-complex characterization using mass spectrometry is limited due to high sample complexity. We describe a method that facilitates detection of signaling proteins concentrated on membranes. Peripheral membrane proteins (reversibly associated with membranes) were eluted from human platelets with alkaline sodium carbonate. Liquid-phase isoelectric focusing and gel electrophoresis were used to identify proteins that changed in levels on membranes from GPVI-stimulated platelets. Immunoblot analysis verified protein recruitment to platelet membranes and subsequent protein phosphorylation was preserved. Hsp47, a collagen binding protein, was among the proteins identified and found to be exposed on the surface of GPVI-activated platelets. Inhibition of Hsp47 abolished platelet aggregation in response to collagen, while only partially reducing aggregation in response to other platelet agonists. We propose that Hsp47 may therefore play a role in hemostasis and thrombosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we demonstrate the suitability of the vertebrate Danio rerio (zebrafish) for functional screening of novel platelet genes in vivo by reverse genetics. Comparative transcript analysis of platelets and their precursor cell, the megakaryocyte, together with nucleated blood cell elements, endothelial cells, and erythroblasts, identified novel platelet membrane proteins with hitherto unknown roles in thrombus formation. We determined the phenotype induced by antisense morpholino oligonucleotide (MO)–based knockdown of 5 of these genes in a laser-induced arterial thrombosis model. To validate the model, the genes for platelet glycoprotein (GP) IIb and the coagulation protein factor VIII were targeted. MO-injected fish showed normal thrombus initiation but severely impaired thrombus growth, consistent with the mouse knockout phenotypes, and concomitant knockdown of both resulted in spontaneous bleeding. Knockdown of 4 of the 5 novel platelet proteins altered arterial thrombosis, as demonstrated by modified kinetics of thrombus initiation and/or development. We identified a putative role for BAMBI and LRRC32 in promotion and DCBLD2 and ESAM in inhibition of thrombus formation. We conclude that phenotypic analysis of MO-injected zebrafish is a fast and powerful method for initial screening of novel platelet proteins for function in thrombosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycoplasmal lipid-associated membrane proteins (LAMPs) and Mycoplasma arthritidis mitogen (MAM superantigen) are potent stimulators of the immune system. The objective of this work was to detect antibodies to MAM and LAMPs of Mycoplasma hominis and M. fermentans in the sera of patients affected by rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) to identify mycoplasmal products that can be involved in the etiopathogenesis of these autoimmune diseases. Serum samples from female RA and SLE patients and controls, recombinant MAM, and LAMPs of M. hominis PG21 and M. fermentans PG18 were used in Western blot assays. A similar frequency of sera from patients and controls reactive to MAM was detected. A larger number of M. hominis and M. fermentans LAMPs were recognized by sera from RA patients than controls, but no differences were detected between sera from SLE patients and controls. Among the LAMPs recognized by IgG antibodies from RA patients, proteins of molecular masses in a range of < 49 and a parts per thousand yen20 KDa (M. hominis) and < 102 and a parts per thousand yen58 KDa (M. fermentans) were the most reactive. These preliminary results demonstrate the strong reactivity of antibodies of RA patients with some M. hominis and M. fermentans LAMPs. These LAMPs could be investigated as mycoplasmal antigens that can take part in the induction or amplification of human autoimmune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) are surface receptors present in eukaryotic cells that mediate cell-cell or cell-extracellular matrix interactions. Vascular endothelium stimulation in vitro that lead to the upregulation of CAMs was reported for the pathogenic spirochaetes, including rLIC10365 of Leptospira interrogans. In this study, we report the cloning of LIC10507, LIC10508, LIC10509 genes of L interrogans using Escherichia coli as a host system. The rational for selecting these sequences is due to their location in L. interrogans serovar Copenhageni genome that has a potential involvement in pathogenesis. The genes encode for predicted lipoproteins with no assigned functions. The purified recombinant proteins were capable to promote the upregulation of intercellular adhesion molecule 1 (ICAM-1) and E-selectin on monolayers of human umbilical vein endothelial cells (HUVECS). In addition, the coding sequences are expressed in the renal tubules of animal during bacterial experimental infection. The proteins are probably located at the outer membrane of the bacteria since they are detected in detergent-phase of L interrogans Triton X-114 extract. Altogether our data suggest a possible involvement of these proteins during bacterial infection and provide new insights into the role of this region in the pathogenesis of Leptospira. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The virulence of the malaria parasite, Plasmodium falciparum, is due in large part to the way in which it modifies the membrane of its erythrocyte host. In this work we have used confocal microscopy and fluorescence recovery after photo-bleaching to examine the lateral mobility of host membrane proteins in erythrocytes infected with P falciparum at different stages of parasite growth. The erythrocyte membrane proteins band 3 and glycophorin show a marked decrease in mobility during the trophozoite stage of growth. Erythrocytes infected with a parasite strain that does not express the knob-associated histidine-rich protein show similar effects, indicating that this parasite protein does not contribute to the immobilization of the host proteins. Erythrocytes infected with ring-stage parasites exhibit intermediate mobility indicating that the parasite is able to modify its host prior to its active feeding stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of 200 mM copper ions on the synthesis of membrane and periplasmic proteins were investigated in iron-grown cells of Acidithiobacillus ferrooxidans (At. ferrooxidans). Total membrane protein profiles of cells grown in the absence of copper ions (unadapted cells) and in the presence of copper ions (copper-adapted cells) were compared by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Crude preparations of outer membrane and periplasmic proteins were analyzed by SDS-PAGE. The synthesis of proteins was diminished or increased in the presence of copper ions. Low molecular weight proteins (< 14 kDa) were significantly repressed by copper. These proteins are probably acidic proteins located in the outer membrane. An over-expression of a periplasmic protein of about 17 kDa was detected in the copper-adapted cells and was assumed to be rusticyanin, a 16.5-kDa periplasmic copper protein present in At. ferrooxidans cells and involved in the electron-transport chain of the iron oxidation pathway. To our knowledge, this is the first report of a possible involvement of the rusticyanin and outer membrane proteins in the mechanism of copper resistance in At. ferrooxidans. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbapenem resistance amongst Acinetobacter spp. has been increasing in the last decade. This study evaluated the outer membrane protein (OMP) profile and production of carbapenemases in 50 carbapenem-resistant Acinetobacter spp. isolates from bloodstream infections. Isolates were identified by API20NE. Minimum inhibitory concentrations (MICs) for carbapenems were determined by broth microdilution. Carbapenemases were studied by phenotypic tests, detection of their encoding gene by polymerase chain reaction (PCR) amplification, and imipenem hydrolysis. Nucleotide sequencing confirming the enzyme gene type was performed using MegaBACE 1000. The presence of OMPs was studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and PCR. Molecular typing was performed using pulsed-field gel electrophoresis (PFGE). All isolates were resistant to carbapenems. Moreover, 98% of the isolates were positive for the gene encoding the enzyme OXA-51-like, 18% were positive for OXA-23-like (only one isolate did not show the presence of the insertion sequence ISAba1 adjacent to this gene) and 76% were positive for OXA-143 enzyme. Five isolates (10%) showed the presence of the IMP-1 gene. Imipenem hydrolysing activity was detected in only three strains containing carbapenemase genes, comprising two isolates containing the bla(IMP) gene and one containing the bla(OXA-51/OXA-23-like) gene. The OMP of 43 kDa was altered in 17 of 25 strains studied, and this alteration was associated with a high meropenem MIC (256 mu g/mL) in 5 of 7 strains without 43 kDa OMP. On the other hand, decreased OMP 33-36 kDa was found in five strains. The high prevalence of OXA-143 and alteration of OMPs might have been associated with a high level of carbapenem resistance. (C) 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane proteins are a large and important class of proteins. They are responsible for several of the key functions in a living cell, e.g. transport of nutrients and ions, cell-cell signaling, and cell-cell adhesion. Despite their importance it has not been possible to study their structure and organization in much detail because of the difficulty to obtain 3D structures. In this thesis theoretical studies of membrane protein sequences and structures have been carried out by analyzing existing experimental data. The data comes from several sources including sequence databases, genome sequencing projects, and 3D structures. Prediction of the membrane spanning regions by hydrophobicity analysis is a key technique used in several of the studies. A novel method for this is also presented and compared to other methods. The primary questions addressed in the thesis are: What properties are common to all membrane proteins? What is the overall architecture of a membrane protein? What properties govern the integration into the membrane? How many membrane proteins are there and how are they distributed in different organisms? Several of the findings have now been backed up by experiments. An analysis of the large family of G-protein coupled receptors pinpoints differences in length and amino acid composition of loops between proteins with and without a signal peptide and also differences between extra- and intracellular loops. Known 3D structures of membrane proteins have been studied in terms of hydrophobicity, distribution of secondary structure and amino acid types, position specific residue variability, and differences between loops and membrane spanning regions. An analysis of several fully and partially sequenced genomes from eukaryotes, prokaryotes, and archaea has been carried out. Several differences in the membrane protein content between organisms were found, the most important being the total number of membrane proteins and the distribution of membrane proteins with a given number of transmembrane segments. Of the properties that were found to be similar in all organisms, the most obvious is the bias in the distribution of positive charges between the extra- and intracellular loops. Finally, an analysis of homologues to membrane proteins with known topology uncovered two related, multi-spanning proteins with opposite predicted orientations. The predicted topologies were verified experimentally, providing a first example of "divergent topology evolution".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetraspan vesicle membrane proteins (TVPs) sind ubiquitäre Komponenten von Transportvesikeln. Bei den Säugetieren unterscheidet man drei Familien, die Physine, Gyrine und SCAMPs (secretory carrier-associated membrane proteins). Ihre Funktion ist weitgehend unbekannt, es wird jedoch vermutet, dass sie eine Rolle bei der Vesikelbildung und der Vesikelrezirkulierung spielen. In Caenorhabditis elegans existiert von jeder Familie jeweils nur ein einziges Polypeptid: für die Physine Synaptophysin (SPH-1), für die Gyrine Synaptogyrin (SNG-1) und für die SCAMPs SCAMP (SCM-1). Ziel der Arbeit war es die Verteilung der C. elegans TVPs zu untersuchen und ihre Funktion unter besonderer Berücksichtigung der vesikelvermittelten synaptischen Kopplung zu bestimmen. Wenn die C. elegans TVPs in humanen Epithelzellen synthetisiert werden, lokalisieren sie in zytoplasmatischen Vesikeln. In Kotransfektionsexperimenten wurde gezeigt, dass sie größtenteils in den gleichen Strukturen enthalten sind. In C. elegans synthetisierte TVP-Reporterkonstrukte können in unterschiedlichen Geweben nachgewiesen werden. Dabei ist SNG-1 fast ausschließlich in Neuronen zu finden. SPH-1 und SCM-1 hingegen weisen komplexe und teilweise überlappende Verteilungsmuster auf. Während für SPH-1 eine starke Fluoreszenz im Pharynx, auf der apikalen Seite der Darmzellen oberhalb des sog. terminal webs und in adluminalen Regionen von exkretorischen Geweben gefunden wurde, war SCM-1 stark in der Muskulatur und den Coelomozyten vertreten. Die Expression von SCM-1 in Pharynx und Darm war deutlich schwächer. Die C. elegans TVPs werden früh in der Entwicklung ab der Gastrulation (SPH-1 und SCM-1) bzw. ab der Neurulation im sog. Komma-Stadium (SNG-1) produziert. Um die Funktion der TVPs in C. elegans zu untersuchen, wurden TVP-Mutanten analysiert. Durch Kombination aller drei TVP-Gen-Mutanten wurden TVP-Dreifachmutanten generiert. Diese wiesen keinen offensichtlichen Defekt im Bewegungsmuster auf, entwickelten sich normal und bildeten ein normales Nervensystem aus. Auch auf unterschiedliche chemische und physikalische Reize in sensorischen Tests reagierten die TVP-Dreifachmutanten in gleicher Weise wie Wildtyptiere. Ebenso zeigen die TVP-Dreifachmutanten elektrophysiologisch unter normalen Bedingungen keine anormalen Reaktionsmuster. In ultrastrukturellen Untersuchungen wurde lediglich eine signifikant erhöhte Anzahl Clathrin-ummantelter Vesikel in cholinergen Synapsen gefunden. Erst unter Stressbedingungen, hervorgerufen durch den GABA-Antagonisten Pentylentetrazol (PTZ), wiesen sowohl die TVP-Dreifach- als auch die TVP-Einzelmutanten eine deutlich erhöhte Krampfbereitschaft auf. Zusammengenommen zeigen die Analysen, dass TVPs zwar für grundlegende neuronale Prozesse nicht notwendig sind, dass sie aber auf der anderen Seite vermutlich an alternativen redundanten Wegen der Neurotransmitterfreisetzung beteiligt sind.