998 resultados para Kinetics uptake


Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well known that earthworms can accumulate metals. However, most accumulation studies focus on Cd-, Cu-, Pb- or Zn-amended soils, additionally few studies consider accumulation kinetics. Here we model the accumulation kinetics of 18 elements by Eisenia fetida, exposed to 8 metal-contaminated and 2 uncontaminated soils. Tissue metal concentration was determined after 3, 7,14, 21, 28 and 42 days. Metal elimination rate was important in determining time to reach steady-state tissue metal concentration. Uptake flux to elimination rate ratios showed less variation and lower values for essential than for non-essential metals. In theory kinetic rate constants are dependent only on species and metal. Therefore it should be possible to predict steady-state tissue metal concentrations on the basis of very few measurements using the rate constants. However, our experiments show that it is difficult to extrapolate the accumulation kinetic constants derived using one soil to another. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A mathematical growth model for the batch solid-state fermentation process for fungal tannase production was developed and tested experimentally. The unstructured model describes the uptake and growth kinetics of Penicillium glabrum in an impregnated polyurethane foam substrate system. In general, good agreement between the experimental data and model simulations was obtained. Biomass, tannase and spore production are described by logistic kinetics with a time delay between biomass production and tannase and spore formation. Possible induction mechanisms for the latter are proposed. Hydrolysis of tannic acid, the main carbon source in the substrate system, is reasonably well described with Michaelis-Menten kinetics with time-varying enzyme concentration but a more complex reaction mechanism is suspected. The metabolism of gallic acid, a tannase-hydrolysis product of tannic acid, was shown to be growth limiting during the main growth phase. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Supervised exercise (SE) in patients with type 2 diabetes improves oxygen uptake kinetics at the onset of exercise. Maintenance of these improvements, however, has not been examined when supervision is removed. We explored if potential improvements in oxygen uptake kinetics following a 12-week SE that combined aerobic and resistance training were maintained after a subsequent 12-week unsupervised exercise (UE). The involvement of cardiac output (CO) in these improvements was also tested. Nineteen volunteers with type 2 diabetes were recruited. Oxygen uptake kinetics and CO (inert gas rebreathing) responses to constant-load cycling at 50% ventilatory threshold (VT), 80% VT, and mid-point between VT and peak workload (50% Δ) were examined at baseline (on 2 occasions) and following each 12-week training period. Participants decided to exercise at a local gymnasium during the UE. Thirteen subjects completed all the interventions. The time constant of phase 2 of oxygen uptake was significantly faster (p < 0.05) post-SE and post-UE compared with baseline at 50% VT (17.3 ± 10.7 s and 17.5 ± 5.9 s vs. 29.9 ± 10.7 s), 80% VT (18.9 ± 4.7 and 20.9 ± 8.4 vs. 34.3 ± 12.7s), and 50% Δ (20.4 ± 8.2 s and 20.2 ± 6.0 s vs. 27.6 ± 3.7 s). SE also induced faster heart rate kinetics at all 3 intensities and a larger increase in CO at 30 s in relation to 240 s at 80% VT; and these responses were maintained post-UE. Unsupervised exercise maintained benefits in oxygen uptake kinetics obtained during a supervised exercise in subjects with diabetes, and these benefits were associated with a faster dynamic response of heart rate after training.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main purpose of this study was to analyze the effects of exercise mode, training status and specificity on the oxygen uptake ((V)over dot O-2) kinetics during maximal exercise performed in treadmill running and cycle ergometry. Seven runners (R), nine cyclists (C), nine triathletes (T) and eleven untrained subjects (U), performed the following tests on different days on a motorized treadmill and on a cycle ergometer: (1) incremental tests in order to determine the maximal oxygen uptake ((V)over dot O-2max) and the intensity associated with the achievement of (V)over dot O-2max (I(V)over dot O-2max); and (2) constant work-rate running and cycling exercises to exhaustion at I(V)over dot O-2max to determine the effective time constant of the (V)over dot O-2 response (tau(V)over dot O-2). Values for (V)over dotO(2max) obtained on the treadmill and cycle ergometer [R=68.8 (6.3) and 62.0 (5.0); C=60.5 (8.0) and 67.6 (7.6); T=64.5 (4.8) and 61.0 (4.1); U=43.5 (7.0) and 36.7 (5.6); respectively] were higher for the group with specific training in the modality. The U group showed the lowest values for VO2max, regardless of exercise mode. Differences in tau(V)over dot O-2 (seconds) were found only for the U group in relation to the trained groups [R=31.6 (10.5) and 40.9 (13.6); C=28.5 (5.8) and 32.7 (5.7); T=32.5 (5.6) and 40.7 (7.5); U=52.7 (8.5) and 62.2 (15.3); for the treadmill and cycle ergometer, respectively]; no effects of exercise mode were found in any of the groups. It is concluded that tauVO(2) during the exercise performed at I(V)over dot O-2max is dependent on the training status, but not dependent on the exercise mode and specificity of training. Moreover, the transfer of the training effects on tau(V)over dotO(2) between both exercise modes may be higher compared with (V)over dot O-2max.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zinc (Zn) uptake kinetics and root and leaf anatomy were studied in coffee trees grown in nutrient solutions with or without Zn. Leaves and roots were sampled and cuts were made in the medium part of the leaves and in root tips and observed under an optical microscope. Plants grown without Zn showed an increase in root and in root stele diameter. There was also an increase in epidermis thickness and in the cross-sectional area of the cortex and stele due to Zn deficiency, but the diameter of xylem vessels was decreased. An increase in root cortex and stele diameter provided for an increased surface for nutrient uptake. Accordingly, C(min) was decreased from 13.8 to 3.4 mu mol L(-1) and V(max) increased from 0.50 to 2.1 mu mol cm(-2) h(-1) .

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of the present study was to compare pulmonary gas exchange kinetics (VO 2 kinetics) and time to exhaustion (Tlim) between trained and untrained individuals during severe exercise performed on a cycle ergometer and treadmill. Eleven untrained males in running (UR) and cycling (UC), nine endurance cyclists (EC), and seven endurance runners (ER) were submitted to the following tests on separate days: (i) incremental test for determination of maximal oxygen uptake (VO 2max) and the intensity associated with the achievement of VO 2max (IVO 2max) on a mechanical braked cycle ergometer (EC and UC) and on a treadmill (ER and UR); (ii) all-out exercise bout performed at IVO 2max to determine the time to exhaustion at IVO 2max (Tlim) and the time constant of oxygen uptake kinetics (τ). The τ was significantly faster in trained group, both in cycling (EC = 28.2 ± 4.7 s; UC = 63.8 ± 25.0 s) and in running (ER = 28.5 ± 8.5 s; UR = 59.3 ± 12.0 s). Tlim of untrained was significantly lower in cycling (EC = 384.4 ± 66.6 s vs. UC; 311.1 ± 105.7 s) and higher in running (ER = 309.2 ± 176.6 s vs. UR = 439.8 ± 104.2 s). We conclude that the VO 2 kinetic response at the onset of severe exercise, carried out at the same relative intensity is sensitive to endurance training, irrespective of the exercise type. The endurance training seems to differently influence Tlim during exercise at IVO 2max in running and cycling. © 2003 Taylor & Francis Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To date little is known about the reliability of peak oxygen consumption (VO2pEAK) in incremental metronome paced step tests (1ST) and the reliability of on-kinetics VO2 has never been studied. We aimed to study the reliability of both tests. Eleven healthy subjects performed two ISTs until exhaustion. On two different days two duplicate 4 min constant metronome paced step tests (CST) were performed. VO2PEAK, mean response time (MRT) and phase II time constant (tau) were tested for reproducibility using the paired t-tests, in addition to the limits of agreement (LOA) and within subject coefficient of variation (COV). With a 95% LOA of 0.38 to 0.26 L min(-1), -8.7 to 9.1 s and -9.9 to 10.5 s they exhibit a COV of 3%, 4.5% and 6.9% for VO2PEAK, MRT and tau respectively. ST are sufficiently reliable for maximal and submaximal aerobic power assessments in healthy subjects and new studies of oxygen uptake kinetics in selected patient groups are warranted. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] The purpose of this investigation was to determine the contribution of muscle O(2) consumption (mVO2) to pulmonary O(2) uptake (pVO2) during both low-intensity (LI) and high-intensity (HI) knee-extension exercise, and during subsequent recovery, in humans. Seven healthy male subjects (age 20-25 years) completed a series of LI and HI square-wave exercise tests in which mVO2 (direct Fick technique) and pVO2 (indirect calorimetry) were measured simultaneously. The mean blood transit time from the muscle capillaries to the lung (MTTc-l) was also estimated (based on measured blood transit times from femoral artery to vein and vein to artery). The kinetics of mVO2 and pVO2 were modelled using non-linear regression. The time constant (tau) describing the phase II pVO2 kinetics following the onset of exercise was not significantly different from the mean response time (initial time delay + tau) for mVO2 kinetics for LI (30 +/- 3 vs 30 +/- 3 s) but was slightly higher (P < 0.05) for HI (32 +/- 3 vs 29 +/- 4 s); the responses were closely correlated (r = 0.95 and r = 0.95; P < 0.01) for both intensities. In recovery, agreement between the responses was more limited both for LI (36 +/- 4 vs 18 +/- 4 s, P < 0.05; r = -0.01) and HI (33 +/- 3 vs 27 +/- 3 s, P > 0.05; r = -0.40). MTTc-l was approximately 17 s just before exercise and decreased to 12 and 10 s after 5 s of exercise for LI and HI, respectively. These data indicate that the phase II pVO2 kinetics reflect mVO2 kinetics during exercise but not during recovery where caution in data interpretation is advised. Increased mVO2 probably makes a small contribution to during the first 15-20 s of exercise.