964 resultados para Biotechnology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rhodococcus genus exhibits diverse enzymatic activity that can be exploited in the conversion of natural and anthropogenic nitrogenous compounds. This catalytic response provides a selective advantage in terms of available nutrients while also serving to remove otherwise harmful xenobiotics. This review provides a critical assessment of the literature on bioconversion of organo-nitrogen compounds with a consideration of applications in bioremediation and commercial biotechnology. By examining the major nitro-organic compounds (amino acids, amines, nitriles, amides and nitroaromatics) in turn, the considerable repertoire of Rhodococcus spp. is established. The available published enzyme reaction data is coupled with genomic characterisation to provide a molecular basis for Rhodococcus enzyme activity with an assessment of the cellular properties that aid substrate accessibility and ensure stability. The metabolic gene clusters associated with the observed reaction pathways are identified and future directions in enzyme optimisation and metabolic engineering are assessed. 2014 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book documents and evaluates the dramatic expansion of intellectual property law to accommodate various forms of biotechnology from micro-organisms, plants, and animals to human genes and stem cells. It makes a unique theoretical contribution to the controversial public debate over the commercialization of biological inventions. The author also considers the contradictions between the Supreme Court of Canada rulings in respect of the Harvard oncomouse, and genetically modified canola. He explores law, policy, and practice in both Australia and New Zealand in respect to gene patents and non-coding DNA. This study charts the rebellion against the European Union Biotechnology Directive particularly in respect of Myriad Genetics BRCA1 and BRCA2 patents, and stem cell patent applications. The book also considers whether patent law will accommodate frontier technologies such as bioinformatics, haplotype mapping, proteomics, pharmacogenomics, and nanotechnology. Intellectual Property and Biotechnology will be of prime interest to lawyers and patent attorneys, scientists and researchers, business managers and technology transfer specialists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a lowcost highperformance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new lowcost environmentallyfriendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentallyconscious focus of this project. Terpinen4ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and antiinflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous byproducts. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physicochemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of wellaccepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7 for the 10 W samples to 76.3 for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 N load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from currentvoltage characteristics of AlpolyterpenolAl devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 1010 _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 10 S/cm to 1.20 10 S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 C to 205 C for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to 3 V, enhancing the effective mobility from 0.012 to 0.021 cm/Vs, and improving the switching property of the device from 10 to 10. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen4ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be nontoxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytase enzyme supplements are now ubiquitous in the commercial production of a range of livestock, particularly chickens and pigs. Significant effort has been directed over the last two decades towards producing improved enzymes with higher activity, increased stability and at economic levels in industrial fermentations. As such, there are excellent products on the market, but there is a continuing demand for further improvements to drive down costs and for enzyme manufacturers to increase market share. The rapid development of DNA sequencing and gene synthesis technologies has provided ready access to a large number of new and uncharacterised potential phytases. Challenges remain however in identifying and developing those with improved properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-stranded RNA (dsRNA) viruses encode only a single protein species that contains RNA-dependent RNA polymerase (RdRP) motifs. This protein is a central component in the life cycle of a dsRNA virus, carrying out both RNA transcription and replication. The architecture of viral RdRPs resembles that of a 'cupped right hand' with fingers, palm and thumb domains. Those applying de novo initiation have additional structural features, including a flexible C-terminal domain that constitutes the priming platform. Moreover, viral RdRPs must be able to interact with the incoming 3'-terminus of the template and position it so that a productive binary complex is formed. Bacteriophage phi6 of the Cystoviridae family is to date one of the best studied dsRNA viruses. The purified recombinant phi6 RdRP is highly active in vitro and possesses both RNA replication and transcription activities. The extensive biochemical observations and the atomic level crystal structure of the phi6 RdRP provides an excellent platform for in-depth studies of RNA replication in vitro. In this thesis, targeted structure-based mutagenesis, enzymatic assays and molecular mapping of phi6 RdRP and its RNA were used to elucidate the formation of productive RNA-polymerase binary complexes. The positively charged rim of the template tunnel was shown to have a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. This work demonstrated that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the phi6 RdRP can be greatly enhanced. Furthermore, proteolyzed phi6 RdRPs that possess a nick in the polypeptide chain at the hinge region, which is part of the extended loop, were better suited for catalysis at higher temperatures whilst favouring back-primed initiation. The clipped C-terminus remains associated with the main body of the polymerase and the hinge region, although structurally disordered, is involved in the control of C-terminal domain displacement. The accumulated knowhow on bacteriophage phi6 was utilized in the development of two technologies for the production of dsRNA: (i) an in vitro system that combines the T7 RNA polymerase and the phi6 RdRP to generate dsRNA molecules of practically unlimited length, and (ii) an in vivo RNA replication system based on restricted infection with phi6 polymerase complexes in bacterial cells to produce virtually unlimited amounts of dsRNA. The pools of small interfering RNAs derived from dsRNA produced by these systems were validated and shown to efficiently decrease the expression of both exogenous and endogenous targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of the dissertation is to analyse the concept of social responsibility in relation to research and development of new biotechnology. This is done by examining the relevant actors researchers, administrators, decision-makers, experts, industry, and the public involved in the Finnish governance of biotechnology through their roles and responsibilities. Existing practises of responsibility in biotechnology governance, as well as the discourses of responsibility the actors conceptions of their own and others responsibilities are analysed. Three types of responsibility that the actors have assumed are formulated, and the implications of these conceptions to the governance of new biotechnology are analysed. From these different types of responsibility adopted and used by the actors, theoretical models called responsibility chains are constructed. The notion of responsibility is under-theorised in sociology and this research is an attempt to create a mid-range theory of responsibility in the context of biotechnology governance. The research aims to increase understanding of the governance system from a holistic viewpoint by contributing to academic debates on science and technology policy, public understanding of science, commercialisation of research, and corporate social responsibility. With a thorough analysis of the concept of responsibility that is derived from empirical data, the research brings new perspectives into these debates by challenging many normative ideas embedded in discourses. For example, multiple roles of the public are analysed to highlight the problems of consumerism and citizen participation in practise, as well as in relation to different policy strategies. The research examines also the contradictory responsibilities faced by biotechnology researchers, who balance between academic autonomy, commercialisation of research, and reflecting social consequences of their work. Industries responsibilities are also examined from the viewpoint of biotechnology. The research methodology addresses the contradictions between empirical findings, theories of biotechnology governance, and policies in a novel way, as the study concentrates on several actors and investigates both the discourses and the practises of the actors. Thus, the qualitative method of analysis is a combination of discourse and content analysis. The empirical material is comprised of 29 personal interviews as well as documents by Finnish and multinational organizations on biotechnology governance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biotechnology holds great promise, and is sure to make an impact in India in the nineties. The role of the government's Department of Biotechnology in focusing attention and resources on crucial problems and in supporting basic research is laudable.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomineralization and biogenesis of iron ore deposits are illustrated in relation to indigenous microorganisms inhabiting iron ore mines. Aerobic and anaerobic microorganisms indigenous to iron oxide mineralization are analyzed. Microbially-induced flotation and flocculation of iron ore minerals such as hematite, alumina, calcite and quartz are discussed with respect to use of four types of microorganisms, namely, Paenibacillus polymyxa, Bacillus subtilis, Saccharomyces cerevisiae and Desulfovibrio desulfuricans. The role of the above organisms in the removal of silica, alumina, clays and apatite from hematite is illustrated with respect to mineral-specific bioreagents, surface chemical changes and microbe-mineral interaction mechanisms. Silica and alumina removal from real iron ores through biobeneficiation is outlined. Environmental benefits of biobeneficiation are demonstrated with respect to biodegradation of toxic reagents and environmentally-safe waste disposal and processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taxol (R) (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol (R) producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol (R) production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol (R) biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol (R) using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol (R) are discussed.