316 resultados para perchlorate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two sets of Schiff base ligands, set-1 and set-2 have been prepared by mixing the respective diamine (1,2-propanediamine or 1,3-propanediamine) and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively and employed for the synthesis of complexes with Ni(II) perchlorate and Ni(II) thiocyanate. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)(2) (L = L-1 [N-1-(1-pyridin-2-yl-ethylidine)-propane-1,3-diamine] for complex 1, L-2 [N-1-pyridine-2-ylmethylene-propane1,3-diamine] for complex 2 or L-3 [N-1-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 3) in which the Schiff bases are mono-condensed terdentate whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL](SCN)(2) (L=L-4 [N,N'-bis-(1-pyridine-2-yl-ethylidine)-propane-1,3-diamine] for complex 4, L-5 [NN'-bis(pyridine-2-ylmethyline)-propane-1, 3-diamine] for complex 5 or L-6 [NN'-bis-(1-pyridine-2-yl-ethylidine)-propane- 1, 2-diamine] for complex 6) irrespective of the sets of ligands used. Formation of the complexes has been explained by anion modulation of cation templating effect. All the complexes have been characterized by elemental analyses, spectral and electrochemical results. Single crystal X-ray diffraction studies confirm the structures of four representative members, 1, 3, 4 and 5; all of them have distorted octahedral geometry around Ni(II). The bis-complexes of terdentate ligands, I and 3 are the mer isomers and the complexes of tetradentate ligands, 4 and 5 possess trans geometry. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four new copper(II) complexes, [((CuLN3)-N-1)(2)](ClO4)(2) (1), [(CuL2 N-3)(2)](ClO4)(2) (2), [CuL3(N-3)ClO4)](n) (3) and [CuL4(mu-1,1-N-3)(mu-1,3-N-3)(ClO4)](n) (4) where L-1 = N-1-pyridin-2-yl-methylene-propane-1,3-diamine, L-2 = N-1-(1-pyridin-2-yl-ethylidene)propane-1,3-diamine, L-3 =N-1-(1-pyridin-2-yl-ethylidene)ethane-1,2-diamine and L-4=N-1-(1-pyridin-2-yl-ethylidene)propane-1,2-diamine are four tridentate N,N,N donor Schiff base ligands, have been derived and structurally characterized by X-ray crystallography. Compounds 1 and 2 consist of double basal-apical end-on (EO) azide bridged dinuclear Cu-II complexes with square-pyramidal geometry. In complex 3 the square planar mononuclear [CuL3 (N-3)] units are linked by weakly coordinated perchlorate ions in the axial positions of Cu-II to form a one-dimensional chain. Two such chains are connected by hydrogen bonds involving perchlorate ions and azide groups. Compound 4 consists of 1-D chains in which the Cu-II ions with a square-pyramidal geometry are alternately bridged by single EO and end-to-end (EE) azido ligands, both adopting a basal-apical disposition. Variable temperature (300-2 K) magnetic susceptibility measurements and magnetization measurements at 2 K have been performed. The results reveal that complexes 1 and 2 are antiferromagnetically coupled through azido bridges (J= -12.18 +/- 0.09 and -4.43 +/- 0.1 cm(-1) for 1 and 2, respectively). Complex 3 shows two different magnetic interactions through the two kinds of hydrogen bonds; one is antiferromagnetic (J(1) = - 9.69 +/- 0.03 cm(-1)) and the other is ferromagnetic (J(2) = 1.00 +/- 0.01 cm(-1)). From a magnetic point of view complex 4 is a ferromagnetic dinuclear complex (J= 1.91 +/- 0.01 cm(-1)) coupled through the EO bridge only. The coupling through the EE bridge is practically nil as the N(azido)-Cu-II (axial) distance (2.643 angstrom) is too long. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the I : 2 condensate of benzil dihydrazone and 2-acetylpyridine as the ligand L, two complexes of zinc, [ZnL(CH3COO)]PF6 (1) and [ZnL(H2O)CIO4]CIO4 H2O (2), are synthesised from Zn(CH3COO)(2).2H(2)O and Zn(CIO4)(2).6H(2)O, respectively. From X-ray crystallography, both the complexes are found to be single helical with the metal in distorted octahedral N4O2 environment. In 1, the two oxygen atoms come from the bidentate acetate while 2 is a monoaqua complex with a perchlorate anion bound to the metal in monodentate fashion. The perchlorate in 2 is not at all weakly bound [Zn-O(perchlorate) 2.256(4) A]. Still in acetonitrile solution, the coordinated perchlorate ion dissociates upon deprotonation [reaction (i)].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three copper(II) complexes, [CuL1], [CuL2] and [CuL3] where L-1, L-2 and L-3 are the tetradentate di-Schiff-base ligands prepared by the condensation of acetylacetone and appropriate diamines (e.g. 1,2-diaminoethane, 1,2-diaminopropane and 1,3-diaminopropane, respectively) in 2:1 ratios, have been prepared. These complexes act as host molecules and include a guest sodium ion by coordinating through the oxygen atoms to result in corresponding new trinuclear complexes, [(CuL1)(2)Na(ClO4)(H2O)][CuL1], [(CuL2)(2)Na(ClO4)(H2O)] (2) and [(CuL3)(2)Na(ClO4)(H2O)] (3) when crystallized from methanol solution containing sodium perchlorate. All three complexes have been characterized by single crystal X-ray crystallography. In all the complexes, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes of Cu(II) in addition to a perchlorate anion and a water molecule. The copper atoms are four coordinate in a square planar environment being bonded to two oxygen atoms and two nitrogen atoms of the Schiff-base ligand. The variable temperature susceptibilities for complexes 1-3 were measured over the range 2-300 K. The isotropic Hamiltonian, H = g(1)beta HS1 + g(2)beta HS2 + J(12)S(1)S(2) + g(3)beta HS3 for complex 1 and H = g(1)beta HS1 + g2 beta HS2 +J(12)S(1)S(2) for complexes 2 and 3 has been used to interpret the magnetic data. The best fit parameters obtained are: g(1) = g(2) = 2.07(0), J = - 1.09(1) cm(-1) for complex 1, g(1) = g(2) = 2.06(0), J = -0.55(1) cm(-1) for complex 2 and g1 = g2 = 2.07(0).J = -0.80(1) cm(-1) for 3. Electrochemical studies displayed an irreversible Cu(II)/Cu(I) one-electron reduction process. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two tridentate Schiff bases, HL1(6-amino-3-methyl-1-phenyl-4-azahex-2-en-1-one), and HL2 (6-atnino-3,6-dimethyl-1-phenyl-4-azahex-2-en-1-one) on reaction with Cu(II) perchlorate in the presence of triethyl amine yielded two new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2) (1) and [(CuL2)(3)(mu(3)-OH)](ClO4)(2) center dot 0.75H(2)O (2), whereas another tridentate ligand HL3 (7-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one) underwent hydrolysis under the same reaction conditions to result in the formation of a mononuclear complex, [Cu(bn)(pn)ClO4] (3) [where bn = 1-benzoylacetonate and pn = 1,3-propanediamine]. All three complexes have been characterized by X-ray crystallography. For both 1 and 2 the cationic part is trinuclear with a [Cu3OH] core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The structure of 3 is a monomer with a chelating 1,3-propanediamine and a benzoyl acetone moiety. Magnetic measurements of I and 2 have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2 + S2S3 + S1S3), yielding as best fit parameters: J = -25.6 cm(-1), g = 2.21 for 1 and J = 11.2 cm(-1), g = 2.10 for 2. The EPR spectra at low temperature could be indicative of spin frustration in complex 1. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Schiff base ligand, HL (2-[1-(3-methylamino-propylimino)-ethyl]-phenol), the 1:1 condensation product of 2-hydroxy acetophenone and N-methyl-1,3-diaminopropane, has been synthesized and characterized by X-ray crystallography as the perchlorate salt [H2L]ClO4 (1). The structure consists of discrete [H2L](+) cations and perchlorate anions. Two dinuclear Ni-II complexes, [Ni2L2(NO2)(2)] (2), [Ni2L2(NO3)(2)] (3) have been synthesized using this ligand and characterized by single crystal X-ray analyses. Complexes 2 and 3 are centrosymmetric dimers in which the Ni-II ions are in distorted fac- and mer-octahedral environments, respectively, bridged by two mu(2)-phenolate ions of deprotonated ligand, L. The plane of the phenyl rings and the Ni2O2 basal plane are nearly coplanar in 2 but almost perpendicular in 3. We have studied and explained this different behavior using high level DFT calculations (RI-BP86/def2-TZVP level of theory). The conformation observed in 3, which is energetically less favorable, is stabilized via intermolecular non-covalent interactions. Under the excitation of ultraviolet light, characteristic fluorescence of compound 1 was observed; by comparison fluorescence intensity decreases in case of compound 3 and completely quenched in compound 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)(2)center dot 6H(2)O in methanol produced a trinuclear Cu-II complex, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O center dot 0.5CH(2)Cl(2) (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary Cu-II complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central mu(3)-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal Cu-II coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = -15.4(2) cm(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot 3.75H(2)O (1), [(CuL2)(3)(mu(3)-OH)](ClO4)(2) (2) and [(CuL3)(3)(mu(3)-OH)](BF4)(2)center dot 0.5CH(3)CN (3) have been synthesized from three tridentate Schiff bases HL1, HL2, and HL3 (HL1 = 2-[(2-amino-ethylimino)-methyl]-phenol, HL2 = 2-[(2-methylamino-ethylimino)-methyl]-phenol and HL3 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol). The complexes are characterized by single-crystal X-ray diffraction analyses, IR, UV-vis and EPR spectroscopy, and variable-temperature magnetic measurements. All the compounds contain a partial cubane [Cu3O4] core consisting of the trinuclear unit [(CuL)(3)(mu(3)-OH)](2+) together with perchlorate or fluoroborate anions. In each of the complexes, the three copper atoms are five-coordinated with a distorted square-pyramidal geometry except in complex 1, in which one of the Cu-II ions of the trinuclear unit is six-coordinate being in addition weakly coordinated to one of the perchlorate anions. Variable-temperature magnetic measurements and EPR spectra indicate an antiferromagnetic exchange coupling between the CuII ions of complexes 1 and 2, while this turned out to be ferromagnetic for complex 3. Experimental values have been fitted according to an isotropic exchange Hamiltonian. Calculations based on Density Functional Theory have also been performed in order to estimate the exchange coupling constants in these three complexes. Both sets of values indicate similar trends and specially calculated J values establish a magneto-structural correlation between them and the Cu-O-Cu bond angle, in that the coupling is more ferromagnetic for smaller bond angle values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of copolymers containing differing proportions of pyrrole and N-methyl pyrrole were prepared electrochemically at various temperatures using acetonitrile as the solvent. The resultant electrical conductivity decreases universally with increasing fraction of N-methyl pyrrole. Films prepared with p-toluene sulfonate as the dopant show a marked variation in structural anisotropy as revealed by X-ray scattering with apparent copolymer content. There is a clear trend between the variation in electrical conductivity and this structural anisotropy. Different patterns of behaviour are observed for films prepared using perchlorate as the dopant and this is attributed to the role of the dopant and final structure in determining the relative reactivities of the pyrrole and N-methyl pyrrole monomers. These observations support the concept that the introduction of methyl substituents into a polypyrrole chain results in a twisted chain conformation. The structure and properties of the resultant copolymer films are particularly sensitive to the preparation conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new tetranuclear complex, [Cu4L4](ClO4)4·2H2O (1), has been synthesized from the self-assembly of copper(II) perchlorate and the tridentate Schiff base ligand (2E,3E)-3-(2-aminopropylimino) butan-2-one oxime (HL). Single-crystal X-ray diffraction studies reveal that complex 1 consists of a Cu4(NO)4 core where the four copper(II) centers having square pyramidal environment are arranged in a distorted tetrahedral geometry. They are linked together by a rare bridging mode (μ3-η1,η2,η1) of oximato ligands. Analysis of magnetic susceptibility data indicates moderate antiferromagnetic (J1 = −48 cm−1, J2 = −40 cm−1 and J3 = −52 cm−1) exchange interaction through σ-superexchange pathways (in-plane bridging) of the oxime group. Theoretical calculations based on DFT technique have been used to obtain the energy states of different spin configurations and estimate the coupling constants and to understand the exact magnetic exchange pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A tetranuclear Cu(II) complex [Cu4L4(H2O)4](ClO4)4 has been synthesized using the terdentate Schiff base 2-(pyridine-2-yliminomethyl)-phenol (HL) (the condensation product of salicylaldehyde and 2-aminopyridine) and copper perchlorate. Chemical characterizations such as IR and UV/Vis of the complex have been carried out. A single-crystal diffraction study shows that the complex contains a nearly planar tetranuclear core containing four copper atoms, which occupy four equivalent five-coordinate sites with a square pyramidal environment. Magnetic measurements have been carried out over the temperature range 2–300K and with 100Oe field strengths. Analysis of magnetic susceptibility data indicates a strong antiferromagnetic (J1=−638cm−1) exchange interaction between diphenoxo-bridged Cu(II) centers and a moderate antiferromagnetic (J2=−34cm−1) interaction between N–C–N bridged Cu(II) centers. Magnetic exchange interactions (J’s) are also discussed on the basis of a computational study using DFT methodology. The spin density distribution (singlet ground state) is calculated to visualize the effect of delocalization of spin density through bridging groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 1:1 condensation of 1,2-diaminopropane and 1-phenylbutane-1,3-dione at high dilution gives a mixture of two positional isomers of terdentate mono-condensed Schiff bases 6-amino-3-methyl-1-phenyl-4-aza-2-hepten-1-one (HAMPAH) and 6-amino-3,5-dimethyl-1-phenyl-4-aza-2-hexen-1-one (HADPAH). The mixture of the terdentate ligands has been used for further condensation with pyridine-2-carboxaldehyde or 2-acetylpyridine to obtain the unsymmetrical tetradentate Schiff base ligands. The tetradentate Schiff bases are then allowed to react with the methanol solution of copper(II) and nickel(II) perchlorate separately. The X-ray diffraction confirms the structures of two of the complexes and shows that the condensation site of the diamine with 1-phenylbutane-1,3-dione is the same.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four new nickel(II) complexes, [Ni2L2(NO2)2]·CH2Cl2·C2H5OH, 2H2O (1), [Ni2L2(DMF)2(m-NO2)]ClO4·DMF (2a), [Ni2L2(DMF)2(m-NO2)]ClO4 (2b) and [Ni3L¢2(m3-NO2)2(CH2Cl2)]n·1.5H2O (3) where HL = 2-[(3-amino-propylimino)-methyl]-phenol, H2L¢ = 2-({3-[(2-hydroxy-benzylidene)-amino]-propylimino}-methyl)-phenol and DMF = N,N-dimethylformamide, have been synthesized starting with the precursor complex [NiL2]·2H2O, nickel(II) perchlorate and sodium nitrite and characterized structurally and magnetically. The structural analyses reveal that in all the complexes, NiII ions possess a distorted octahedral geometry. Complex 1 is a dinuclear di-m2-phenoxo bridged species in which nitrite ion acts as chelating co-ligand. Complexes 2a and 2b also consist of dinuclear entities, but in these two compounds a cis-(m-nitrito-1kO:2kN) bridge is present in addition to the di-m2-phenoxo bridge. The molecular structures of 2a and 2b are equivalent; they differ only in that 2a contains an additional solvated DMF molecule. Complex 3 is formed by ligand rearrangement and is a one-dimensional polymer in which double phenoxo as well as m-nitrito-1kO:2kN bridged trinuclear units are linked through a very rare m3-nitrito-1kO:2kN:3kO¢ bridge. Analysis of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the nickel(II) ions in four complexes, with exchange parameters J of -5.26, -11.45, -10.66 and -5.99 cm-1 for 1, 2a, 2b and 3, respectively

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serrano-Nascimento C, Calil-Silveira J, Nunes MT. Posttranscriptional regulation of sodium-iodide symporter mRNA expression in the rat thyroid gland by acute iodide administration. Am J Physiol Cell Physiol 298: C893-C899, 2010. First published January 27, 2010; doi:10.1152/ajpcell.00224.2009.-Iodide is an important regulator of thyroid activity. Its excess elicits the Wolff-Chaikoff effect, characterized by an acute suppression of thyroid hormone synthesis, which has been ascribed to serum TSH reduction or TGF-beta increase and production of iodolipids in the thyroid. These alterations take hours/days to occur, contrasting with the promptness of Wolff-Chaikoff effect. We investigated whether acute iodide administration could trigger events that precede those changes, such as reduction of sodium-iodide symporter (NIS) mRNA abundance and adenylation, and if perchlorate treatment could counteract them. Rats subjected or not to methylmercaptoimidazole treatment (0.03%) received NaI (2,000 mu g/0.5 ml saline) or saline intraperitoneally and were killed 30 min up to 24 h later. Another set of animals was treated with iodide and perchlorate, in equimolar doses. NIS mRNA content was evaluated by Northern blotting and real-time PCR, and NIS mRNA poly(A) tail length by rapid amplification of cDNA ends-poly(A) test (RACE-PAT). We observed that NIS mRNA abundance and poly(A) tail length were significantly reduced in all periods of iodide treatment. Perchlorate reversed these effects, indicating that iodide was the agent that triggered the modifications observed. Since the poly(A) tail length of mRNAs is directly associated with their stability and translation efficiency, we can assume that the rapid decay of NIS mRNA abundance observed was due to a reduction of its stability, a condition in which its translation could be impaired. Our data show for the first time that iodide regulates NIS mRNA expression at posttranscriptional level, providing a new mechanism by which iodide exerts its autoregulatory effect on thyroid.