223 resultados para undercarboxylated osteocalcin
Resumo:
The organic material of our teeth consists of collagens and a number of calcium-binding phosphoproteins. Six of these phosphoproteins have recently been grouped in the family of the SIBLINGs (small integrin-binding ligand, N-linked glycoproteins), namely osteopontin, bone sialoprotein, dentin matrix protein (DMP1), dentin sialophosphoprotein (DSPP), matrix extracellular phosphoglycoprotein (MEPE) and enamelin. We prepared a cDNA library from rat incisors in order to identify the genes involved in tooth formation. The library was screened by subtractive hybridization with two probes; one specific for teeth, the other for bone. We found that the vast majority of the clones from our library were expressed at similar levels in bone and teeth, demonstrating the close relationship of the two tissues. Only 7% of all the clones were expressed in a tooth-specific fashion. These included clones for the enamel proteins; amelotin, amelogenin, ameloblastin and enamelin; for the dentin proteins DSPP and DMP1; and for the intermediate filament protein cytokeratin 13. Several typical bone proteins, including collagen I, osteocalcin, alkaline phosphatase and FATSO, were also expressed at significantly higher levels in teeth than in bone, probably due to the extreme growth rate of rat incisors. The amino acid sequence of rat amelotin showed 62% identity with the sequence from humans. It was expressed considerably later than the other enamel proteins, suggesting that amelotin may serve a function different from those of amelogenin, ameloblastin and enamelin.
Resumo:
BACKGROUND AND AIMS: Heterotopic ossification (HO) is a pathological bone formation process in which ectopic bone is formed in soft tissue. The formation of bone depends on the expression of the osteoblast phenotype. Earlier studies have shown conflicting results on the expression of phenotype markers of cells originating from HO and normal bone. The hypothesis of the present study is that cells from HO show an altered expression of osteoblast-specific phenotype markers compared to normal osteoblasts. The aims of the study were to further characterize the expression of osteoblast phenotypemarkers and to provide a comparison with other study results. PATIENTS AND METHODS: Using an in vitro technique, reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and immunohistochemistry, we compared the phenotype gene expression (type I collagen, alkaline phosphatase, Cbfa-1, osteocalcin) of osteoblasts from resected HO and normal bone (iliac crest). RESULTS: Cells from HO expressed the osteoblast phenotype (type I collagen, alkaline phosphatase) but were characterized by a depleted osteocalcin expression. The expression of Cbfa-1 (osteocalcin transcription gene) showed a large variety in our study. Preoperative radiotherapy had no effect on phenotype expression in cells from HO. CONCLUSION: Our results provide a characterization of cells originating from HO and support the thesis of an impaired osteoblast differentiation underlying the formation of HO. The transcription axis from Cbfa-1 to osteocalcin could be involved in the pathogenesis of HO.
Resumo:
OBJECTIVE: To examine the effects of infliximab on bone resorption by osteoclast precursor cells (OCPs) in patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS) and to compare the results with changes in disease activity. METHODS: Before and during 24 weeks of infliximab treatment peripheral blood mononuclear cells of 9 RA and 10 AS patients were seeded onto ivory wafers and adherent cells, including OCPs, were grown in medium promoting osteoclast differentiation. Bone resorption was evaluated morphometrically and correlated to disease activity. 19 healthy individuals were studied in parallel. In addition, biochemical bone markers were assessed in all patients at baseline and after 24 weeks. RESULTS: OCPs from RA patients showed a higher bone resorption at baseline when compared to AS patients. Blocking of TNFalpha with infliximab resulted in a strong reduction of bone resorption by OCPs in both cohorts and did occur faster in RA compared to AS patients. This inhibition coincided with reduction of clinical disease activity in both patient cohorts and with an increase of serum osteocalcin levels and a relative decrease of collagen crosslinks in RA compared to AS patients. CONCLUSION: These results provide an explanation on the cellular level for the anticatabolic effect of TNF neutralization on bone. The variation in the kinetics of bone resorption by the OCPs in patients with RA and AS suggests disease-specific differences in the type or in the preactivation of OCPs.
Resumo:
Hyperhomocysteinemia (HHCY) has been linked to fragility fractures and osteoporosis. Folate and vitamin B(12) deficiencies are among the main causes of HHCY. However, the impact of these vitamins on bone health has been poorly studied. This study analyzed the effect of folate and vitamin B(12) deficiency on bone in rats. We used two groups of rats: a control group (Co, n = 10) and a vitamin-deficient group (VitDef, n = 10). VitDef animals were fed for 12 wk with a folate- and vitamin B(12)-free diet. Co animals received an equicaloric control diet. Tissue and plasma concentrations of homocysteine (HCY), S-adenosyl-homocysteine (SAH), and S-adenosyl-methionine (SAM) were measured. Bone quality was assessed by biomechanical testing (maximum force of an axial compression test; F(max)), histomorphometry (bone area/total area; B.Ar./T.Ar.], and the measurement of biochemical bone turnover markers (osteocalcin, collagen I C-terminal cross-laps [CTX]). VitDef animals developed significant HHCY (Co versus VitDef: 6.8 +/- 2.7 versus 61.1 +/- 12.8 microM, p < 0.001) that was accompanied by a high plasma concentration of SAH (Co versus VitDef: 24.1 +/- 5.9 versus 86.4 +/- 44.3 nM, p < 0.001). However, bone tissue concentrations of HCY, SAH, and SAM were similar in the two groups. Fmax, B.Ar./T.Ar., OC, and CTX did not differ between VitDef and Co animals, indicating that bone quality was not affected. Folate and vitamin B(12) deficiency induces distinct HHCY but has no effect on bone health in otherwise healthy adult rats. The unchanged HCY metabolism in bone is the most probable explanation for the missing effect of the vitamin-free diet on bone.
Resumo:
To study the time course of demineralization and fracture incidence after spinal cord injury (SCI), 100 paraplegic men with complete motor loss were investigated in a cross-sectional study 3 months to 30 years after their traumatic SCI. Fracture history was assessed and verified using patients' files and X-rays. BMD of the lumbar spine (LS), femoral neck (FN), distal forearm (ultradistal part = UDR, 1/3 distal part = 1/3R), distal tibial diaphysis (TDIA), and distal tibial epiphysis (TEPI) was measured using DXA. Stiffness of the calcaneus (QUI.CALC), speed of sound of the tibia (SOS.TIB), and amplitude-dependent SOS across the proximal phalanges (adSOS.PHAL) were measured using QUS. Z-Scores of BMD and quantitative ultrasound (QUS) were plotted against time-since-injury and compared among four groups of paraplegics stratified according to time-since-injury (<1 year, stratum I; 1-9 years, stratum II; 10-19 years, stratum III; 20-29 years, stratum IV). Biochemical markers of bone turnover (deoxypyridinoline/creatinine (D-pyr/Cr), osteocalcin, alkaline phosphatase) and the main parameters of calcium phosphate metabolism were measured. Fifteen out of 98 paraplegics had sustained a total of 39 fragility fractures within 1,010 years of observation. All recorded fractures were fractures of the lower limbs, mean time to first fracture being 8.9 +/- 1.4 years. Fracture incidence increased with time-after-SCI, from 1% in the first 12 months to 4.6%/year in paraplegics since >20 years ( p<.01). The overall fracture incidence was 2.2%/year. Compared with nonfractured paraplegics, those with a fracture history had been injured for a longer time ( p<.01). Furthermore, they had lower Z-scores at FN, TEPI, and TDIA ( p<.01 to <.0001), the largest difference being observed at TDIA, compared with the nonfractured. At the lower limbs, BMD decreased with time at all sites ( r=.49 to.78, all p<.0001). At FN and TEPI, bone loss followed a log curve which leveled off between 1 to 3 years after injury. In contrast, Z-scores of TDIA continuously decreased even beyond 10 years after injury. LS BMD Z-score increased with time-since-SCI ( p<.05). Similarly to DXA, QUS allowed differentiation of early and rapid trabecular bone loss (QUI.CALC) vs slow and continuous cortical bone loss (SOS.TIB). Biochemical markers reflected a disproportion between highly elevated bone resorption and almost normal bone formation early after injury. Turnover declined following a log curve with time-after-SCI, however, D-pyr/Cr remained elevated in 30% of paraplegics injured >10 years. In paraplegic men early (trabecular) and persistent (cortical) bone loss occurs at the lower limbs and leads to an increasing fracture incidence with time-after-SCI.
Resumo:
The effect of cyclosporine A during the development phase of adjuvant arthritis was studied in 40 female rats. Five groups of eight animals each received oral cyclosporine, 2.5, 5, 10, 20, or 30 mg/kg daily for 30 days. Also, eight normal and eight diseased rats served as placebo controls. At the time of inoculation of the adjuvant suspension on day 0, measurement of disease parameters (paw swelling and vertebral density) was started concomitantly with beginning of therapy. On completion of the study, the animals were killed, and after measurement of total skeletal and segmental (hind legs and caudal spine plus two caudal vertebrae) calcium, the two assessed vertebrae and both femoral condyles were removed for histomorphometric evaluation (vertebrae) and for estimation of glycosaminoglycan (GAG) content of cartilage. Blood for osteocalcin determinations also was taken at term from control and untreated arthritic rats and from animals that had received 10 mg/kg cyclosporine. Treatment with 2.5 mg/kg was ineffective, but doses between 5 and 20 mg/kg prevented the development of articular and osseous lesions. The 20 mg/kg dose showed no better effect than 10 mg/kg. This was shown by the absence of inflammation and the presence of normal condylar GAG and total mineral content in the areas screened. Untreated animals showed marked reductions in all of these parameters. The 30 mg/kg dose was effective in blocking the GAG loss, but significant reductions in bone density and trabecular volume were seen. There was a close correlation between GAG and bone density values, suggesting a common causal relationship. Circulating osteocalcin was significantly elevated in the untreated animals with adjuvant arthritis.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Reported effects of cyclosporin A (Sandimmun, CsA) on bone have been both contradictory and controversial. Thus, stimulation of new bone formation as well as increased mineral and matrix resorption have been observed. To investigate the response of basal mineral and matrix turnover to CsA treatment at different stages of skeletal development, comparative experiments were conducted in young growing female rats and in adults. Fifty-six young animals (study A) and 40 adults (study B) received orally either the carrier substance or 5, 15, and 30 mg/kg CsA for 30 days. The following parameters were measured: (a) total skeletal mineral content by dual energy X-ray absorptiometry (DEXA) on days 1 and 30; (b) tibial trabecular volume at day 30; (c) serum osteocalcin at 5-day intervals; (d) urinary deoxypyridinoline (Dpd) excretion (days 1, 15, and 30); and (e) plasma levels of CsA. Results can be summarized as follows: in young rats (study A), total skeletal mineral was not modified by the 5- and 15-mg/kg doses of CsA, whereas 30 mg/kg induced a significant decrease (-15%, p < 0.01). This parameter was not significantly modified in adult animals (study B) subjected to the same doses. The administration of 5 mg/kg CsA did not alter tibial trabecular volume in young rats, but 15 and 30 mg/kg significantly lowered this parameter (-16.3%, p < 0.02, and -42%, p < 0.001, respectively). In adult rats, tibial trabecular volume remained unchanged with the exception of the group receiving 30 mg/kg which exhibited significantly lower values (-28%, p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
BACKGROUND Preclinical and clinical studies suggest that a combination of enamel matrix derivative (EMD) with demineralized freeze-dried bone allograft (DFDBA) may improve periodontal wound healing and regeneration. To date, no single study has characterized the effects of this combination on in vitro cell behavior. The aim of this study is to test the ability of EMD to adsorb to the surface of DFDBA particles and determine the effect of EMD coating on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. METHODS DFDBA particles were precoated with EMD or human blood and analyzed for protein adsorption patterns via scanning electron microscopy. Cell attachment and proliferation were quantified using a commercial assay. Cell differentiation was analyzed using real-time polymerase chain reaction for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen 1α1, and mineralization was assessed using alizarinred staining. RESULTS Analysis of cell attachment revealed no significant differences among control, blood-coated, and EMD-coated DFDBA particles. EMD significantly increased cell proliferation at 3 and 5 days after seeding for both osteoblasts and PDL cells compared to control and blood-coated samples. Moreover, there were significantly higher messenger ribonucleic acid levels of osteogenic differentiation markers, including collagen 1α1, alkaline phosphatase, and osteocalcin, in osteoblasts and PDL cells cultured on EMD-coated DFDBA particles at 3, 7, and 14 days. CONCLUSION The results suggest that the addition of EMD to DFDBA particles may influence periodontal regeneration by stimulating PDL cell and osteoblast proliferation and differentiation.
Resumo:
Enamel matrix derivative (EMD), a porcine extract harvested from developing porcine teeth, has been shown to promote formation of new cementum, periodontal ligament and alveolar bone. Despite its widespread use, an incredibly large variability among in vitro studies has been observed. The aim of the present study was to determine the influence of EMD on cells at different maturation stages of osteoblast differentiation by testing 6 cell types to determine if cell phenotype plays a role in cell behaviour following treatment with EMD. Six cell types including MC3T3-E1 pre-osteoblasts, rat calvarial osteoblasts, human periodontal ligament (PDL) cells, ROS cells, MG63 cells and human alveolar osteoblasts were cultured in the presence or absence of EMD and proliferation rates were quantified by an MTS assay. Gene expression of collagen1(COL1), alkaline phosphate(ALP) and osteocalcin(OC) were investigated by real-time PCR. While EMD significantly increased cell proliferation of all cell types, its effect on osteoblast differentiation was more variable. EMD significantly up-regulated gene expression of COL1, ALP and OC in cells early in their differentiation process when compared to osteoblasts at later stages of maturation. Furthermore, the effect of cell passaging of primary human PDL cells (passage 2 to 15) was tested in response to treatment with EMD. EMD significantly increased cell proliferation and differentiation of cells at passages 2-5 however had completely lost their ability to respond to EMD by passages 10+. The results from the present study suggest that cell stimulation with EMD has a more pronounced effect on cells earlier in their differentiation process and may partially explain why treatment with EMD primarily favors regeneration of periodontal defects (where the periodontal ligament contains a higher number of undifferentiated progenitor cells) over regeneration of pure alveolar bone defects containing no periodontal ligament and a more limited number of osteoprogenitor cells.
Resumo:
The purpose of the study is to determine the effects of the BIG 1-98 treatments on bone mineral density. BIG 1-98 compared 5-year adjuvant hormone therapy in postmenopausal women allocated to four groups: tamoxifen (T); letrozole (L); 2-years T, 3-years L (TL); and 2-years L, 3-years T (LT). Bone mineral density T-score was measured prospectively annually by dual energy X-ray absorption in 424 patients enrolled in a sub-study after 3 (n = 150), 4 (n = 200), and 5 years (n = 74) from randomization, and 1 year after treatment cessation. Prevalence of osteoporosis and the association of C-telopeptide, osteocalcin, and bone alkaline phosphatase with T-scores were assessed. At 3 years, T had the highest and TL the lowest T-score. All arms except for LT showed a decline up to 5 years, with TL exhibiting the greatest. At 5 years, there were significant differences on lumbar T-score only between T and TL, whereas for femur T-score, differences were significant for T versus L or TL, and L versus LT. The 5-year prevalence of spine and femur osteoporosis was the highest on TL (14.5 %, 7.1 %) then L (4.3 %, 5.1 %), LT (4.2 %, 1.4 %) and T (4 %, 0). C-telopeptide and osteocalcin were significantly associated with T-scores. While adjuvant L increases bone mineral density loss compared with T, the sequence LT has an acceptable bone safety profile. C-telopeptide and osteocalcin are useful markers of bone density that may be used to monitor bone health during treatment. The sequence LT may be a valid treatment option in patients with low and intermediate risk of recurrence.
Resumo:
Context: In virologically suppressed, antiretroviral-treated patients, the effect of switching to tenofovir (TDF) on bone biomarkers compared to patients remaining on stable antiretroviral therapy is unknown. Methods: We examined bone biomarkers (osteocalcin [OC], procollagen type 1 amino-terminal propeptide, and C-terminal cross-linking telopeptide of type 1 collagen) and bone mineral density (BMD) over 48 weeks in virologically suppressed patients (HIV RNA < 50 copies/ml) randomized to switch to TDF/emtricitabine (FTC) or remain on first-line zidovudine (AZT)/lamivudine (3TC). PTH was also measured. Between-group differences in bone biomarkers and associations between change in bone biomarkers and BMD measures were assessed by Student's t tests, Pearson correlation, and multivariable linear regression, respectively. All data are expressed as mean (SD), unless otherwise specified. Results: Of 53 subjects (aged 46.0 y; 84.9% male; 75.5% Caucasian), 29 switched to TDF/FTC. There were reductions in total hip and lumbar spine BMD in those switching to TDF/FTC (total hip, TDF/FTC, −1.73 (2.76)% vs AZT/3TC, −0.39 (2.41)%; between-group P = .07; lumbar spine, TDF/FTC, −1.50 (3.49)% vs AZT/3TC, +0.25 (2.82)%; between-group P = .06), but they did not reach statistical significance. Greater declines in lumbar spine BMD correlated with greater increases in OC (r = −0.28; P = .05). The effect of TDF/FTC on bone biomarkers remained significant when adjusted for baseline biomarker levels, gender, and ethnicity. There was no difference in change in PTH levels over 48 weeks between treatment groups (between-group P = .23). All biomarkers increased significantly from weeks 0 to 48 in the switch group, with no significant change in those remaining on AZT/3TC (between-group, all biomarkers, P < .0001). Conclusion: A switch to TDF/FTC compared to remaining on a stable regimen is associated with increases in bone turnover that correlate with reductions in BMD, suggesting that TDF exposure directly affects bone metabolism in vivo.
Resumo:
Osseous metastases account for most of the morbidity and mortality associated with prostate cancer, for which there are currently no effective therapies. In the skeletal metastatic environment, neoplastic prostatic epithelial cells interact in a bidirectional stimulatory manner with osteoblastic stromal cells. Similarly, the presence of osteoblastic cells is essential for the survival and maintenance of intraosseous prostate cancer cells. In this thesis, I have developed novel gene therapy strategies for the treatment of androgen-independent human prostate cancers in experimental animal models. First, Ad-CMV-p53, a recombinant adenovirus (Ad) containing p53 tumor suppressor gene driven by the universal cytomegalovirus promoter, was effective in inhibiting prostate cancer cell growth, and direct intratumoral injections of Ad-CMV-p53 resulted in tumor regression. Second, because prostate cancer cells as well as osteoblastic cells produce osteocalcin (OC), OC promoter mediated tissue/tumor specific toxic gene therapy is developed to interrupt stromal-epithelial communications by targeting both cell types. Ad-OC-TK, a recombinant Ad containing the herpes simplex virus thymidine kinase (TK) gene driven by the OC promoter, was generated to inhibit the growth of osteoblastic osteosarcoma with prodrug acyclovir (ACV). Ad-OC-TK/ACV also inhibited the growth of prostate cancer cells and suppressed the growth of subcutaneous and intraosseous prostate tumor. In order to combine treatment modalities to maximize tumor cell-kill with minimized host toxicities, Ad-OC-TK/ACV was applied in combination with low dose methotrexate to eradicate osteoblastic osteosarcoma. In targeting of micrometastatic disease, intravenous Ad-OC-TK/ACV treatment resulted in significant tumor nodule reduction and prolonged the survival of animals harboring osteosarcoma lung metastases without significant host toxicity. Ad-OC-TK is a rational choice for the treatment of prostate cancer skeletal metastasis because OC is uniformly detected in both primary and metastatic human prostate cancer specimens by immunohistochemistry. Ad-OC-TK/ACV inhibits the growth not only of prostate cancer cells but also of their supporting bone stromal cells. Targeting both prostate cancer epithelium and its supporting stroma may be most efficacious for the treatment of prostate cancer osseous metastases. ^
Resumo:
OBJECTIVE We investigated the skeletal growth profile of female rats from birth to senescence (100weeks) on the basis of sequential radiometrical, hormonal and biochemical parameters. DESIGN Weaning rats entered the study which was divided into two sections: a) sequential measurements of vertebral and tibial growths and bone mineral density (BMD), estimation of mineral content of the entire skeleton (BMC) and chemical analysis of vertebral Ca; and b) determination of basal and pulsatile growth hormone (rGH), insulin-like growth hormone (IGF-I), estradiol (E2), parathyroid hormone (PTH), osteocalcin (OC) and urinary d-pyridinoline (dp) throughout the experimental period. RESULTS Vertebral and tibial growths ceased at week 25 whereas BMD and BMC as well as total vertebral Ca exhibited a peak bone mass at week 40. rGH pulsatile profiles were significantly higher in younger animals coinciding with the period of active growth and IGF-I peaked at 7weeks, slowly declining thereafter and stabilizing after week 60. OC and dp closely paralleled IGF-I coinciding with the period of enhanced skeletal growth, remaining thereafter in the low range indicative of reduced bone turnover. E2 increased during reproductive life but the lower values subsequently recorded were still in the physiological range, strongly suggesting a protective role of this steroid on bone remodeling. PTH followed a similar profile to E2, but the significance of this after completion of growth remains unclear. CONCLUSIONS Mechanisms governing skeletal growth in the female rat appear similar to those in humans. Bone progression and attainment of peak bone mass are under simultaneous control of rGH, IGF-I and calciotropic hormones and are modulated by E2. This steroid seems to protect the skeleton from resorption before senescence whereas the role of PTH in this context remains uncertain.
Resumo:
OBJECTIVES Recent studies suggest that a combination of enamel matrix derivative (EMD) with grafting material may improve periodontal wound healing/regeneration. Newly developed calcium phosphate (CaP) ceramics have been demonstrated a viable synthetic replacement option for bone grafting filler materials. AIMS This study aims to test the ability for EMD to adsorb to the surface of CaP particles and to determine the effect of EMD on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. MATERIALS AND METHODS EMD was adsorbed onto CaP particles and analyzed for protein adsorption patterns via scanning electron microscopy and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using CellTiter 96 One Solution Cell Assay (MTS). Cell differentiation was analyzed using real-time PCR for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen1α1, and mineralization was assessed using alizarin red staining. RESULTS Analysis of cell attachment revealed significantly higher number of cells attached to EMD-adsorbed CaP particles when compared to control and blood-adsorbed samples. EMD also significantly increased cell proliferation at 3 and 5 days post-seeding. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers including collagen1α1, alkaline phosphatase, and osteocalcin in osteoblasts and PDL cells cultured on EMD-adsorbed CaP particles at various time points. CONCLUSION The present study suggests that the addition of EMD to CaP grafting particles may influence periodontal regeneration by stimulating PDL cell and osteoblast attachment, proliferation, and differentiation. Future in vivo and clinical studies are required to confirm these findings. CLINICAL RELEVANCE The combination of EMD and CaP may represent an option for regenerative periodontal therapy in advanced intrabony defects.
Resumo:
Background: The differentiation of ADSC is regulated by many factors, including oxygen tensions. Evidences have suggested that low oxygen tension or hypoxia is involved in the osteogenic, adipogenic differentiations of MSCs. Expansion and induction of ADSCs under hypoxia generally result in enhanced osteogenic, differentiation. Therefore, we analyzed bovine ADSC differentiations in Normoxia and hypoxia conditions Methodology: Recently (<8h) cow tail from a slaughterhouse, take out some fat from the tail and fat cells was isolated by using for isolation of ADSC protocol, the expansion cells were put into osteogenic and adipogenic medium for 3 weeks in hypoxia and normoxia conditions separately and characterized by Von kossa, Alizarin red and Oil red O staining and further by using real-time PCR by using primers of osteocalcin, Collagen type1, cbfa1/runx2, ALP, ostepontin, osteonectin, BMP2, BMP24, BMP27, noggin, gremlin, Nestin and HIF1A,VEGFA,PPARG,Leptin. Results: Our experiment results show hypoxia promotes osteogenesis but suppresses adipogenesis.