233 resultados para Oncogenes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Triple-negative breast cancers (TNBC) are characterized by the lack of or reduced expression of the estrogen and progesterone receptors, and normal expression of the human epidermal growth factor receptor 2. The lack of a well-characterized target for treatment leaves only systemic chemotherapy as the mainstay of treatment. Approximately 60-70% of patients are chemosensitive, while the remaining majority does not respond. Targeted therapies that take advantage of the unique molecular perturbations found in triple-negative breast cancer are needed. The genes that are frequently amplified or overexpressed represent potential therapeutic targets for triple-negative breast cancer. The purpose of this study was to identify and validate novel therapeutic targets for triple-negative breast cancers. 681 genes showed consistent and highly significant overexpression in TNBC compared to receptor-positive cancers in 2 data sets. For two genes, 3 of the 4 siRNAs showed preferential growth inhibition in TNBC cells. These two genes were the low density lipoprotein receptor-related protein 8 (LRP8) and very low-density lipoprotein receptor (VLDLR). Exposure to their cognate ligands, reelin and apolipoprotein E isoform 4 (ApoE4), stimulated the growth of TNBC cells in vitro. Suppression of the expression of either LRP8 or VLDLR or exposure to RAP (an inhibitor of ligand binding to LRP8 and VLDLR) abolished this ligand-induced proliferation. High-throughput protein and metabolic arrays revealed that ApoE4 stimulation rescued TNBC cells from serum-starvation induced up-regulation of genes involved in lipid biosynthesis, increased protein expression of oncogenes involved in the MAPK/ERK and DNA repair pathways, and reduced the serum-starvation induction of biochemicals involved in oxidative stress response and glycolytic metabolism. shLRP8 MDA-MB-231 xenografts had reduced tumor volume, in comparison to parental and shCON xenografts. These results indicate that LRP8-APOE signaling confers survival advantages to TNBC tumors under reduced nutrient conditions and during cellular environmental stress. We revealed that the LRP8-APOE receptor-ligand system is overexpressed in human TNBC. We also demonstrated that this receptor system mediates a strong growth promoting and survival function in TNBC cells in vitro and helps to sustain the growth of MDA-MD-231 xenografts. We propose that inhibitors of LRP8-APOE signaling may be clinically useful therapeutic agents for triple-negative breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

p53 is a tumor suppressor gene that is the most frequent target inactivated in cancers. Overexpression of wild-type p53 in rat embryo fibroblasts suppresses foci formation by other cooperating oncogenes. Introduction of wild-type p53 into cells that lack p53 arrests them at the G1/S boundary and reverses the transformed phenotype of some cells. The function of p53 in normal cells is illustrated by the ability of p53 to arrest cells at G1 phase of the cell cycle upon exposure to DNA-damaging agents including UV-irradiation and biosynthesis inhibitors.^ Since the amino acid sequence of p53 suggested that it may function as a transcription factor, we used GAL4 fusion assays to test that possibility. We found that wild-type p53 could specifically activate transcription when anchored by the GAL4 DNA binding domain. Mutant p53s, which have lost the ability to suppress foci formation by other oncogenes, were not able to activate transcription in this assay. Thus, we established a direct correlation between the tumor suppression and transactivation functions of p53.^ Having learned that p53 was a transcriptional activator, we next sought targets of p53 activation. Because many transcription factors regulate their own expression, we tested whether p53 had this autoregulatory property. Transient expression of wild-type p53 in cells increased the levels of endogenous p53 mRNA. Cotransfection of p53 together with a reporter bearing the p53 promoter confirmed that wild-type p53 specifically activates its own promoter. Deletion analysis from both the 5$\sp\prime$ and 3$\sp\prime$ ends of the promoter minimized the region responsible for p53 autoregulation to 45 bp. Methylation interference identified nucleotides involved in protein-DNA interaction. Mutations within this protected site specifically eliminated the response of the promoter to p53. In addition, multiple copies of this element confer responsiveness to wild-type p53 expression. Thus, we identified a F53 responsive element within the p53 promoter.^ The presence of a consensus NF-$\kappa$B site in the p53 promoter suggested that NF-KB may regulate p53 expression. Gel-shift experiments showed that both the p50 homodimer and the p50/p65 heterodimer bind to the p53 promoter. In addition, the p65 subunit of NF-$\kappa$B activates the p53 promoter in transient transfection experiments. TNF $\alpha$, a natural NF-$\kappa$B inducer, also activates the p53 promoter. Both p65 activation and TNF $\alpha$ induction require an intact NF-$\kappa$B site in the p53 promoter. Since NF-$\kappa$B activation occurs as a response to stress and p53 arrests cells in G1/S, where DNA repair occurs, activation of p53 by NF-$\kappa$B could be a mechanism by which cells recover from stress.^ In conclusion, we provided the first data that wild-type p53 functions as a transcriptional activator, whereas mutant p53 cannot. The correlation between growth suppression and transcriptional activation by p53 implies a pathway of tumor suppression. We have analyzed upstream components of the pathway by the identification of both p53 and NF-$\kappa$B as regulators of the p53 promoter. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neu gene encodes the transmembrane tyrosine kinase growth factor receptor, p185. To study neu induced cellular transformation, we developed revertant cells from the neu transformed NIH 3T3 cell line, B104-1-1, by treating the cells with the chemical mutagen ethylmethane sulfonate. The morphologically normal revertant cells were first selected by their ability to either attach to culture plates or survive in the presence of the cytotoxic reagents colchicine or 5-fluoro-2deoxyuridine. Two of the 21 candidate revertant cell lines isolated were further characterized and were found to lose their anchorage independence and ability to grow in 1% calf serum, indicating that they were nontransformed even though they still expressed p185 oncoprotein. The tyrosine residues of p185 in these two revertants were underphosphorylated, which may have contributed to their nontransformed status. Also, the p185 oncoprotein lacked significant tyrosine kinase activity. In addition, these revertants also resisted transformation by neu and several additional oncogenes (H-ras, N-ras, v-mos, v-abl, and v-fos) as determined by focus forming assays. These results indicated that we had successfully developed, from neu transformed cells, revertants which exhibited defective tyrosine phosphorylation and kinase activity of the neu oncoprotein. The results also suggested that neu and several other oncogenes may share common elements in their pathways for the induction of cellular transformation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fine balance between proliferation and apoptosis plays a primary role in carcinogenesis. Proto-oncogenes that induce both proliferation and apoptosis provide a powerful inbuilt system to inhibit clonal expansion of cells with high proliferation rates. This provides a restraint to the development of neoplasms. C-myc expressing cells undergo apoptosis in low serum by an unknown mechanism. Several lines of evidence suggested that c-myc induces apoptosis by a transcriptional mechanism. However, the target genes of this program have not been fully defined. Protein synthesis inhibitors induce apoptosis in c-myc over-expressing cells at high serum levels suggesting that inhibition of synthesis of a survival factor may induce apoptosis. We show that the expression of c-myc directly correlates with an increase in the level of a survival protein, bcl-$\rm x\sb{L},$ and a decrease in the pro-apoptotic protein, bax, at both the protein and mRNA level. Furthermore, a significant decrease of the bcl-$\rm x\sb{L}$ protein levels is observed under low serum conditions. In order to investigate the mechanism of regulation of bcl-$\rm x\sb{L}$ and bax by c-myc, the bcl-x and bax promoters were cloned, sequenced and shown to contain c-myc binding sites. The chloramephenicol acetyl transferase (CAT) reporter assay was used to demonstrate activation of the bcl-x promoter by increasing levels of c-myc when co-transfected in COS cells. The bax promoter was also shown to be transrepressed in c-myc expressing cells. The role of bcl-$\rm x\sb{L}$ in apoptosis regulation in c-myc cell lines in normal and low serum was then investigated. Cells lines expressing c-myc and bcl-$\rm x\sb{L}$ were generated and were shown to be resistant to apoptosis induction in low serum. Furthermore, cell lines expressing c-myc, anti-sense bcl-$\rm x\sb{L}$ and $\beta$-galactosidase demonstrated significantly enhanced rates of apoptosis in high serum compared to c-myc Rat 1a cells. These findings suggest that c-myc activates a survival program involving bcl-$\rm x\sb{L}$ upregulation and bax downregulation. However, this survival signal is reduced under low serum conditions by the relative downregulation of bcl-$\rm x\sb{L}$ allowing for apoptosis to proceed. These data also directly demonstrates that downregulation in the level of bcl-$\rm x\sb{L}$ associated with low serum conditions is a critical determinant of c-myc induced apoptosis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular oncogenes and tumor suppressor genes regulate cellular adhesion and proliferation, two important events in malignant transformation. Even though receptor-like protein tyrosine phosphatases (R-PTPs) can influence these events, their role in malignant transformation has not been studied. The major goal of this study was to determine whether downregulation of R-PTP$\mu$ expression in lung epithelial cells is associated with or causal to neoplastic transformation. Examination of R-PTP$\mu$ expression in normal and carcinoma cells demonstrated that lung epithelial cells expressed R-PTP$\mu$ whereas lung carcinoma cells did not, and that incubation with TGF-$\alpha$ and HGF induced a two fold increase in R-PTP$\mu$ mRNA expression. To associate the expression of R-PTP$\mu$ with neoplastic transformation, we transfected lung epithelial cells with the H-ras oncogene. Transformation resulted in the activation of the MAPK signal transduction pathway, the hyperphosphorylation of c-met, and the production of HGF. Upon analysis of R-PTP$\mu$ expression, we observed a significant decrease in R-PTP$\mu$ mRNA and protein levels suggesting that transformation can directly or indirectly downregulate the expression of R-PTP$\mu.$ TGF-$\beta$ reversed the H-ras transformed phenotype, an event directly correlated with upregulation of R-PTP$\mu.$ To provide a casual relationship between R-PTP$\mu$ and cessation of tumor cell growth, we transfected carcinoma cells with the wild type R-PTP$\mu$ cDNA. Transiently expressing cells were selected by FACS using the mAb 3D7 and plated into individual wells. Carcinoma cells positive for R-PTP$\mu$ expression did not grow into colonies whereas non-R-PTP$\mu$ expressing carcinoma cells did, suggesting that expression of R-PTP$\mu$ arrested cell growth. To better understand the growth arrest induced by R-PTP$\mu$, we transfected the H-ras transformed lung epithelial cell line (MvLu-1-ras) with R-PTP$\mu$ (MvLu-1-ras/R-PTP$\mu$). Examination of growth factor receptor phosphorylation revealed significant inhibition of c-met and EGF-R. Furthermore, these cells underwent apoptosis in the absence of serum. Taken together the data demonstrate that the downregulation of R-PTP$\mu$ expression is an important step in neoplastic transformation of lung epithelial cells and that its presence can induce apoptosis and inhibit the signaling of c-met and EGF-R, two major growth factor receptors in lung carcinoma. In conclusion, the expression of R-PTP$\mu$ is inversely correlated with neoplastic transformation, growth and survival of tumor cells. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adenovirus type 5 E1A (abbreviated E1A) has previously been known as an immortalization oncogene because E1A is required for transforming oncogenes, such as ras and E1B, to transform cells in primary cultures. However, E1A has also been shown to downregulate the overexpression of the Her-2/neu oncogene, resulting in suppression of transformation and tumorigenesis induced by that oncogene. In addition, E1A is able to promote apoptosis induced by anticancer drugs, irradiation, and serum deprivation. Many tyrosine kinases, such as the EGF receptor, Her-2/Neu, Src, and Axl are known to play a role in oncogenic signals in transformed cells. To study the mechanism underlying the E1A-mediated tumor-suppressing function, we exploited a modified tyrosine kinase profile assay (Proc. Natl. Acad. Sci, 93, 5958–5962, 1996) to identify potential tyrosine kinases regulated by E1A. RT-PCR products were synthesized with two degenerate primers derived from the conserved motifs of various tyrosine kinases. A tyrosine kinase downregulated by E1A was identified as Axl by analyzing the Alu I-digested RT-PCR products. We isolated the DNA fragment of interest, and found that E1A negatively regulated the expression of the transforming receptor tyrosine kinase Axl at the transcriptional level. To study whether downregulation of the Axl receptor is involved in E1A-mediated growth suppression, we transfected axl cDNA into E1A-expressing cells (ip1-E1A) to establish cells that overexpressed Axl (ip1-E1A-Axl). The Axl ligand Gas6 triggered a greater mitogenic effect in these ip1-E1A-Axl cells than in the control cells ip1-E1A and protected the Axl-expressing cells from serum deprivation-induced apoptosis. Further study showed that Akt is required for Axl-Gas6 signaling to prevent ip1-E1A-Axl cells from serum deprivation-induced apoptosis. These results indicate that downregulation of the Axl receptor by E1A is involved in E1A-mediated growth suppression and E1A-induced apoptosis, and thereby contributes to E1A's anti-tumor activities. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integrin-linked kinase (ILK) is an ankyrin repeat containing serine-threonine protein kinase that can interact directly with the cytoplasmic domains of the β1 and β3 integrin subunits and whose kinase activity is modulated by cell–extracellular matrix interactions. Overexpression of constitutively active ILK results in loss of cell–cell adhesion, anchorage-independent growth, and tumorigenicity in nude mice. We now show that modest overexpression of ILK in intestinal epithelial cells as well as in mammary epithelial cells results in an invasive phenotype concomitant with a down-regulation of E-cadherin expression, translocation of β-catenin to the nucleus, formation of a complex between β-catenin and the high mobility group transcription factor, LEF-1, and transcriptional activation by this LEF-1/β-catenin complex. We also find that LEF-1 protein expression is rapidly modulated by cell detachment from the extracellular matrix, and that LEF-1 protein levels are constitutively up-regulated at ILK overexpression. These effects are specific for ILK, because transformation by activated H-ras or v-src oncogenes do not result in the activation of LEF-1/β-catenin. The results demonstrate that the oncogenic properties of ILK involve activation of the LEF-1/β-catenin signaling pathway, and also suggest ILK-mediated cross-talk between cell–matrix interactions and cell–cell adhesion as well as components of the Wnt signaling pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell cycle progression is monitored by highly coordinated checkpoint machinery, which is activated to induce cell cycle arrest until defects like DNA damage are corrected. We have isolated an anti-proliferative cell cycle regulator named G2A (for G2 accumulation), which is predominantly expressed in immature T and B lymphocyte progenitors and is a member of the seven membrane-spanning G protein-coupled receptor family. G2A overexpression attenuates the transformation potential of BCR-ABL and other oncogenes, and leads to accumulation of cells at G2/M independently of p53 and c-Abl. G2A can be induced in lymphocytes and to a lesser extent in nonlymphocyte cell lines or tissues by multiple stimuli including different classes of DNA-damaging agents and serves as a response to damage and cellular stimulation which functions to slow cell cycle progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is a progressive multigenic disorder characterized by defined changes in the transformed phenotype that culminates in metastatic disease. Determining the molecular basis of progression should lead to new opportunities for improved diagnostic and therapeutic modalities. Through the use of subtraction hybridization, a gene associated with transformation progression in virus- and oncogene-transformed rat embryo cells, progression elevated gene-3 (PEG-3), has been cloned. PEG-3 shares significant nucleotide and amino acid sequence homology with the hamster growth arrest and DNA damage-inducible gene gadd34 and a homologous murine gene, MyD116, that is induced during induction of terminal differentiation by interleukin-6 in murine myeloid leukemia cells. PEG-3 expression is elevated in rodent cells displaying a progressed-transformed phenotype and in rodent cells transformed by various oncogenes, including Ha-ras, v-src, mutant type 5 adenovirus (Ad5), and human papilloma virus type 18. The PEG-3 gene is transcriptionally activated in rodent cells, as is gadd34 and MyD116, after treatment with DNA damaging agents, including methyl methanesulfonate and γ-irradiation. In contrast, only PEG-3 is transcriptionally active in rodent cells displaying a progressed phenotype. Although transfection of PEG-3 into normal and Ad5-transformed cells only marginally suppresses colony formation, stable overexpression of PEG-3 in Ad5-transformed rat embryo cells elicits the progression phenotype. These results indicate that PEG-3 is a new member of the gadd and MyD gene family with similar yet distinct properties and this gene may directly contribute to the transformation progression phenotype. Moreover, these studies support the hypothesis that constitutive expression of a DNA damage response may mediate cancer progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Okadaic acid (OA) is a strong tumor promoter of mouse skin carcinogenesis and also a potent inhibitor of serine/threonine protein phosphatases. OA induces various genetic alterations in cultured cells, such as diphtheria-toxin-resistance mutations, sister chromatid exchange, exclusion of exogenous transforming oncogenes, and gene amplification. The present study revealed that it caused minisatellite mutation (MSM) at a high frequency in NIH 3T3 cells, although no microsatellite mutation was found. Nine of 31 clones (29%) exhibited MSM after 6 days of OA treatment, as opposed to only 1 of 30 clones (3%) without OA exposure. Moreover, NIH 3T3 cells treated with OA acquired tumorigenicity in nude mice, giving rise to 7 tumors within 25 weeks in 20 sites where 3 × 106 cells were injected. In contrast, the same numbers of untreated cells gave rise to only one tumor, and the tumor grew much slower. All of three OA-induced tumors examined manifested the MSM. The findings thus point to a molecular mechanism by which OA could function as a tumor promoter, and also the biological relevance of the induction of MSM in the tumorigenic process by OA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is a disease that begins with mutation of critical genes: oncogenes and tumor suppressor genes. Our research on carcinogenic aromatic hydrocarbons indicates that depurinating hydrocarbon–DNA adducts generate oncogenic mutations found in mouse skin papillomas (Proc. Natl. Acad. Sci. USA 92:10422, 1995). These mutations arise by mis-replication of unrepaired apurinic sites derived from the loss of depurinating adducts. This relationship led us to postulate that oxidation of the carcinogenic 4-hydroxy catechol estrogens (CE) of estrone (E1) and estradiol (E2) to catechol estrogen-3,4-quinones (CE-3, 4-Q) results in electrophilic intermediates that covalently bind to DNA to form depurinating adducts. The resultant apurinic sites in critical genes can generate mutations that may initiate various human cancers. The noncarcinogenic 2-hydroxy CE are oxidized to CE-2,3-Q and form only stable DNA adducts. As reported here, the CE-3,4-Q were bound to DNA in vitro to form the depurinating adduct 4-OHE1(E2)-1(α,β)-N7Gua at 59–213 μmol/mol DNA–phosphate whereas the level of stable adducts was 0.1 μmol/mol DNA–phosphate. In female Sprague–Dawley rats treated by intramammillary injection of E2-3,4-Q (200 nmol) at four mammary glands, the mammary tissue contained 2.3 μmol 4-OHE2-1(α,β)-N7Gua/molDNA–phosphate. When 4-OHE1(E2) were activated by horseradish peroxidase, lactoperoxidase, or cytochrome P450, 87–440 μmol of 4-OHE1(E2)-1(α, β)-N7Gua was formed. After treatment with 4-OHE2, rat mammary tissue contained 1.4 μmol of adduct/mol DNA–phosphate. In each case, the level of stable adducts was negligible. These results, complemented by other data, strongly support the hypothesis that CE-3,4-Q are endogenous tumor initiators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the effect of two rhesus papillomavirus 1 (RhPV) oncogenes on cytokine-induced signal transduction pathways leading to the possible activation of Ras protein (p21ras) and phosphatidylinositol kinase. p21ras in both the activated (GTP-bound) and inactivated (GDP-bound) states were quantitated. NIH 3T3 cell lines expressing the RhPV 1 E5 gene or epidermal growth factor receptor cDNA had about a sixfold higher ratio of p21ras-bound GTP to p21ras-bound GDP as compared with parental NIH 3T3 cells or a cell line expressing the RhPV 1 E7 gene under normal culture conditions, yet expressed similar levels of p21ras. Quiescent cells had dramatically reduced levels of activated p21ras, except those containing RhPV 1 E7. Levels were restored by stimulation with epidermal growth factor or platelet-derived growth factor. Both epidermal growth factor and platelet-derived growth factor receptor of RhPV 1 E5- and E7-containing cells responded to cytokine stimulation. Endogenous phosphatidylinositol-3′-kinase was up-regulated in NIH 3T3 cells transformed with the E5 genes of RhPV 1 and bovine papillomavirus 1. These results suggest that E5 genes of papillomaviruses play a major role in the regulation of transduction pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our recent studies have shown that deregulated expression of R2, the rate-limiting component of ribonucleotide reductase, enhances transformation and malignant potential by cooperating with activated oncogenes. We now demonstrate that the R1 component of ribonucleotide reductase has tumor-suppressing activity. Stable expression of a biologically active ectopic R1 in ras-transformed mouse fibroblast 10T½ cell lines, with or without R2 overexpression, led to significantly reduced colony-forming efficiency in soft agar. The decreased anchorage independence was accompanied by markedly suppressed malignant potential in vivo. In three ras-transformed cell lines, R1 overexpression resulted in abrogation or marked suppression of tumorigenicity. In addition, the ability to form lung metastases by cells overexpressing R1 was reduced by >85%. Metastasis suppressing activity also was observed in the highly malignant mouse 10T½ derived RMP-6 cell line, which was transformed by a combination of oncogenic ras, myc, and mutant p53. Furthermore, in support of the above observations with the R1 overexpressing cells, NIH 3T3 cells cotransfected with an R1 antisense sequence and oncogenic ras showed significantly increased anchorage independence as compared with control ras-transfected cells. Finally, characteristics of reduced malignant potential also were demonstrated with R1 overexpressing human colon carcinoma cells. Taken together, these results indicate that the two components of ribonucleotide reductase both are unique malignancy determinants playing opposing roles in its regulation, that there is a novel control point important in mechanisms of malignancy, which involves a balance in the levels of R1 and R2 expression, and that alterations in this balance can significantly modify transformation, tumorigenicity, and metastatic potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immortalization of human cells is a critical step during tumorigenesis. In vitro, normal human somatic cells must overcome two proliferative blockades, senescence and crisis, to become immortal. Transformation with viral oncogenes extends the life span of human cells beyond senescence. Such transformed cells eventually succumb to crisis, a period of widespread cellular death that has been proposed to be the result of telomeric shortening. We now show that ectopic expression of the telomerase catalytic subunit (human telomerase reverse transcriptase or hTERT) and subsequent activation of telomerase can allow postsenescent cells to proliferate beyond crisis, the last known proliferative blockade to cellular immortality. Moreover, we demonstrate that alteration of the carboxyl terminus of human telomerase reverse transcriptase does not affect telomerase enzymatic activity but impedes the ability of this enzyme to maintain telomeres. Telomerase-positive cells expressing this mutant enzyme fail to undergo immortalization, further tightening the connection between telomere maintenance and immortalization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how oncogenic transformation sensitizes cells to apoptosis may provide a strategy to kill tumor cells selectively. We previously developed a cell-free system that recapitulates oncogene dependent apoptosis as reflected by activation of caspases, the core of the apoptotic machinery. Here, we show that this activation requires a previously identified apoptosis-promoting complex consisting of caspase-9, APAF-1, and cytochrome c. As predicted by the in vitro system, preventing caspase-9 activation blocked drug-induced apoptosis in cells sensitized by E1A, an adenoviral oncogene. Oncogenes, such as E1A, appear to facilitate caspase-9 activation by several mechanisms, including the control of cytochrome c release from the mitochondria.