246 resultados para IAA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dass Pflanzen gegen phytopathogene Infektionen resistent sind, ist das Ergebnis von multip-len Abwehrreaktionen. Eine solche ist auch die Hypersensitivitätsreaktion (HR). Sie ist die Folge eines Befalls von Börner mit Rebläusen und zeigt sich an Blättern und Wurzeln der resistenten Unterlagsrebe in Form von lokalen Nekrosen. Die Erzeugung von neuen, trans-genen reblausresistenten Unterlagsreben verlangt präzise Kenntnisse über die Mechanismen der Reblausresistenz. Um Resistenzgene zu identifizieren, wurden im Rahmen dieser Arbeit differenzielle Genexpressionsanalysen eingesetzt. Diese waren die Microarray Analyse mit der Geniom one Technik und die real time (RT) -PCR. Sie erlaubten eine Gegenüberstellung der Genexpression in behandeltem Wurzelgewebe mit der Expression im Normalgewebe der Unterlagsrebe Börner. Als experimenteller Induktor der HR in Börner diente die Indol-3-Essigsäure (IES), ein Bestandteil des Reblausspeichels. Frühere Untersuchungen zur Reb-lausresistenz zeigten, dass bei einer Behandlung mit IAA an Wurzeln von Börner Nekrosen entstehen, nicht jedoch an Wurzeln von der reblaustoleranten Unterlagssorte SO4 oder dem reblausanfälligem Edelreis. Das war der Grund, SO4 und Riesling als Vergleichsobjekte zu Börner für diese Studie auszuwählen. So sollte die Bedeutung der Rolle von IES als Auslö-ser der Resistenzmechanismen in Börner erklärt werden. Insgesamt konnten deutliche Unter-schiede in den Reaktionen der drei Rebsorten auf die IES Behandlung aufgedeckt werden. Während in Börner eine hohe Anzahl an Genen und diese intensiv auf den IES Reiz reagiert, fallen die Gene bei SO4 und Riesling zahlenmäßig kaum ins Gewicht und die Reaktionen der beiden Sorten auf IES zudem eher schwach aus. In der Summe waren es 27 Gene, die für die Reblausresistenz in Börner verantwortlich sein könnten. So konnte eine IES bedingte Aktivierung von Genen beobachtet werden, die bei der Produktion von Phytoalexinen be-deutsam sind, wie z.B. die phenylalanine ammonia-lyase, die lipoxygenase und die stilbene synthase. Weiter ließ sich eine Regulation von allgemein Stress assoziierten Genen und von Zellwandproteinen und eine Induktion von Signalkomponenten, etwa des Transkriptionsfak-tors ethylene response factor, nachweisen. Eine deutliche Hochregulation von Au-xintransportern in den IES behandelten Börnerwurzeln gab zudem Anhaltspunkte auf sorten-spezifische Unterschiede in der zellulären Aufnahme und Abgabe der IES. Durch die Ausar-beitung des Zusammenspiels der durch IES regulierten Gene konnten in dieser Arbeit wert-volle Hinweise auf die Mechanismen der Reblausresistenz in Börner gewonnen werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pergularain e I, a cysteine protease with thrombin-like activity, was purified by ion exchange chromatography from the latex of Pergularia extensa. Its homogeneity was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), native PAGE and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass of pergularain e I by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) was found to be 23.356 kDa and the N-terminal sequence is L-P-H-D-V-E. Pergularain e I is a glycoprotein containing approximately 20% of carbohydrate. Pergularain e I constituted 6.7% of the total protein with a specific activity of 9.5 units/mg/min with a 2.11-fold increased purity. Proteolytic activity of the pergularain e I was completely inhibited by iodoacetic acid (IAA). Pergularain e I exhibited procoagulant activity with citrated plasma and fibrinogen similar to thrombin. Pergularain e I increases the absorbance of fibrinogen solution in concentration-dependent and time-dependent manner. At 10 microg concentration, an absorbance of 0.48 was reached within 10 min of incubation time. Similar absorbance was observed when 0.2 NIH units of thrombin were used. Thrombin-like activity of pergularain e I is because of the selective hydrolysis of A alpha and B beta chains of fibrinogen and gamma-chain was observed to be insusceptible to hydrolysis. Molecular masses of the two peptide fragments released from fibrinogen due to the hydrolysis by pergularain e I at 5-min incubation time were found to be 1537.21 and 1553.29 and were in close agreement with the molecular masses of 16 amino acid sequence of fibrinopeptide A and 14 amino acid sequence of fibrinopeptide B, respectively. Prolonged fibrinogen-pergularain e I incubation releases additional peptides and their sequence comparison of molecular masses of the released peptides suggested that pergularain e I hydrolyzes specifically after arginine residues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we isolated eight copper-resistant bacteria from Torch Lake sediment contaminated by copper mine tailings (stamp sand). Sequence analysis of gyrB and rpoD genes revealed that these organisms are closer to various Pseudomonas species. These eight bacterial isolates were also resistant to zinc, cesium, lead, arsenate and mercury. Further characterization showed that all the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. Genes involved in copper resistance of Pseudomonas sp. TLC 6-6.5-4 was analyzed by transposon mutational analysis. Two copper sensitive mutants with significant reduction in copper resistance were identified: CSM1, a mutant disrupted in trp A gene (tryptophan synthase alpha subunit); CSM2, a mutant disrupted in clpA gene (ATP-dependent Clp protease). Proteomic and metabolomic analysis were performed to identify biochemical and molecular mechanisms involved in copper resistance using CSM2 due to its lower minimum inhibitory concentration compared with CSM1 and the wild type. The effect of different bacterial inoculation methods on plant growth, copper uptake and soil enzyme activities was investigated. Four different delivery methods were used including soil inoculation (before or after plant emergence), seed coating and root dipping. Soil inoculation before sowing seeds and coating seeds with PGPB led to better growth of maize, higher copper uptake and an increase in soil invertase and dehydrogenase activities. Proteomic and metabolomic analyses were performed to investigate the effect of bacterial inoculation on maize grown in normal soil and stamp sand. Our results revealed that bacterial inoculation led to environment-dependent effects on maize proteome and metabolome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family display protein sequence homology with the SLC15/PepT/PTR/POT family of peptide transporters in animals. In comparison to their animal and bacterial counterparts, these plant proteins transport a wide variety of substrates: nitrate, peptides, amino acids, dicarboxylates, glucosinolates, IAA, and ABA. The phylogenetic relationship of the members of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the identification of unambiguous clades, defining eight subfamilies. The phylogenetic tree was used to determine a unified nomenclature of this family named NPF, for NRT1/PTR FAMILY. We propose that the members should be named accordingly: NPFX.Y, where X denotes the subfamily and Y the individual member within the species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auxin is of vital importance in virtually every aspect of plant growth and development, yet, even after almost a century of intense study, major gaps in our knowledge of its synthesis, distribution, perception, and signal transduction remain. One unique property of auxin is its polar transport, which in many well-documented cases is a critical part of its mode of action. Auxin is actively transported through the action of both influx and efflux carriers. Inhibition of polar transport by the efflux inhibitor N-1-naphthylphthalamic acid (NPA) causes a complete cessation of leaf initiation, a defect that can be reversed by local application of the auxin, indole-3-acetic acid (IAA), to the responsive zone of the shoot apical meristem. In this study, we address the role of the auxin influx carrier in the positioning and outgrowth of leaf primordia at the shoot apical meristem of tomato. By using a combination of transport inhibitors and synthetic auxins, we demonstrate that interference with auxin influx has little effect on organ formation as such, but prevents proper localization of leaf primordia. These results suggest the existence of functional auxin concentration gradients in the shoot apical meristem that are actively set up and maintained by the action of efflux and influx carriers. We propose a model in which efflux carriers control auxin delivery to the shoot apical meristem, whereas influx and efflux carriers regulate auxin distribution within the meristem.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auxin (IAA) is an important regulator of plant development and root differentiation. Although recent studies indicate that salicylic acid (SA) may also be important in this context by interfering with IAA signaling, comparatively little is known about its impact on the plant’s physiology, metabolism, and growth characteristics. Using carbon-11, a short-lived radioisotope (t 1/2 = 20.4 min) administered as 11CO2 to maize plants (B73), we measured changes in these functions using SA and IAA treatments. IAA application decreased total root biomass, though it increased lateral root growth at the expense of primary root elongation. IAA-mediated inhibition of root growth was correlated with decreased 11CO2 fixation, photosystem II (PSII) efficiency, and total leaf carbon export of 11C-photoassimilates and their allocation belowground. Furthermore, IAA application increased leaf starch content. On the other hand, SA application increased total root biomass, 11CO2 fixation, PSII efficiency, and leaf carbon export of 11C-photoassimilates, but it decreased leaf starch content. IAA and SA induction patterns were also examined after root-herbivore attack by Diabrotica virgifera to place possible hormone crosstalk into a realistic environmental context. We found that 4 days after infestation, IAA was induced in the midzone and root tip, whereas SA was induced only in the upper proximal zone of damaged roots. We conclude that antagonistic crosstalk exists between IAA and SA which can affect the development of maize plants, particularly through alteration of the root system’s architecture, and we propose that the integration of both signals may shape the plant’s response to environmental stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The AXR6 gene is required for auxin signaling in the Arabidopsis embryo and during postembryonic development. One of the effects of auxin is to stimulate degradation of the Aux/IAA auxin response proteins through the action of the ubiquitin protein ligase SCFTIR1. Here we show that AXR6 encodes the SCF subunit CUL1. The axr6 mutations affect the ability of mutant CUL1 to assemble into stable SCF complexes resulting in reduced degradation of the SCFTIR1 substrate AXR2/IAA7. In addition, we show that CUL1 is required for lateral organ initiation in the shoot apical meristem and the inflorescence meristem. These results indicate that the embryonic axr6 phenotype is related to a defect in SCF function and accumulation of Aux/IAA proteins such as BDL/IAA12. In addition, we show that CUL1 has a role in auxin response throughout the life cycle of the plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical–basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical–basal position or the identity of the induced structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se micropropagó Cissus tiliacea, recurso fitogenético con potencial agronómico y farmacológico, en los medios de cultivo Murashige-Skoog (MS) y Lloyd y McCown (WPM). En ambos medios se generaron resultados similares para número de brotes, nudos, hojas y raíces adventicias, sólo existió diferencia significativa (p ≤ 0,05) en la formación de callo. Para la multiplicación in vitro se utilizó WPM adicionado con 0; 0,5; 1,0; 1,5 ó 2,0 mg L-1 de benciladenina (BA) y se emplearon tres tipos de segmentos nodales (basal, medio y apical). Las concentraciones de 0 y 0,5 mg L-1 de BA resultaron en un mayor tamaño y desarrollo del explante, además permitieron la formación de 1,2 a 1,6 raíces por explante. Las concentraciones de 1,5 y 2,0 mg L-1 de BA indujeron la formación de callo. No existió diferencia significativa en las variables evaluadas por efecto del tipo de segmento nodal establecido in vitro. En el enraizamiento, en el medio MS, se evaluaron tres tipos de auxinas: ácido naftalen-1-acético (ANA), ácido indol-3-butírico (AIB) y ácido indol- 3-acético (AIA) a 0,5 mg L-1; el mayor número de raíces secundarias y diámetro de la raíz principal fue inducido por ANA, sin embargo AIB indujo una mayor elongación de la raíz principal. Los resultados del presente trabajo sugieren que el cultivo in vitro de C. tiliacea es una alternativa para su conservación y multiplicación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bathymetry raster with a resolution of 5 m x 5 m was processed from unpublished single beam data from the Argentine Antarctica Institute (IAA, 2010) and multibeam data from the United Kingdom Hydrographic Office (UKHO, 2012) with a cell size of 5 m x 5 m. A coastline digitized from a satellite image (DigitalGlobe, 2014) supplemented the interpolation process. The 'Topo to Raster' tool in ArcMap 10.3 was used to merge the three data sets, while the coastline represented the 0-m-contour to the interpolation process ('contour type option').

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The east coast of the AP is highly influenced by cold and dry air masses stemming from the adjacent Weddell Sea. By the contrary, the west coast jointly with the South Shetland Islands are directly exposed to the humid and relatively warm air masses from the South Pacific Ocean carried by the strong and persistent westerly winds. Systematic glaciological field studies are very scarce on both sides of the AP, among them can be mentioned a mass-balance program performed continuously since summer 1998/99 by the Instituto Antártico Argentino (IAA) on Vega Island, James Ross Archipelago, on the northeastern flank of the AP. Another continuous plurianual glaciological research has been initiated in 2010 jointly by the University of Bonn and the IAA at the Fourcade Glacier on King George Island (KGI) within the framework of the ESF project IMCOAST (FK 03F0617B). Two transects of mass balance stakes were installed from the top of the Warszawa Ice Dome down to the border of the glaciers Fourcade and Polar Club, to serve for calibration and validation of modeling efforts. The stakes were measured at the beginning and end of each summer field campaign in November 2010, February - March 2011, January - March 2012, and especially during the austral winter 2012 up to March 2013 every 10 to 14 days depending on weather conditions. During the austral winter 2013 and until June 2014 the measurements were conducted every 20 to 30 days, weather permitting. Snow density was measured as well in every field trip from June 2012 until June 2104, establishing a rather homogeneous value along the different parts of the glacier. Snow density in late summer, rho_s is usually higher than the one in late winter, rho_w. Seasonal average values were calculated for the area covered by the mass balance stakes, being rho_s= 471 Kg/m**3 and rho_w = 363 Kg/m**3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The initial reaction in the pathway leading to the production of indole-3-acetic acid (IAA) in plants is the reaction between chorismate and glutamine to produce anthranilate, catalysed by the enzyme anthranilate synthase (ASA; EC 4.1.3.27). Compared with non-transgenic controls, leaves of transgenic poplar with ectopic expression of the pine cytosolic glutamine synthetase (GS1a; EC 6.3.1.2) produced significantly greater glutamine and significantly enhanced ASA a-subunit (ASA1) transcript and protein (approximately 130% and 120% higher than in the untransformed controls, respectively). Similarly, tobacco leaves fed with 30 mM glutamine and 2 mM chorismate showed enhanced ASA1 transcript and protein (175% and 90% higher than controls, respectively). Furthermore, free IAA was significantly elevated both in leaves of GS1a transgenic poplar and in tobacco leaves fed with 30 mM glutamine and 2 mM chorismate. These results indicated that enhanced cellular glutamine may account for the enhanced growth in GS transgenic poplars through the regulation of auxin biosynthesis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An HPLC/GC–MS/MS technique (high-pressure liquid chromatography in combination with gas chromatography–tandem mass spectrometry) has been worked out to analyze indole-3-acetamide (IAM) with very high sensitivity, using isotopically labelled IAM as an internal standard. Using this technique, the occurrence of IAM in sterile-grown Arabidopsis thaliana (L.) Heynh. was demonstrated unequivocally. In comparison, plants grown under non-sterile conditions in soil in a greenhouse showed approximately 50% higher average levels of IAM, but the differences were not statistically significant. Thus, microbial contributions to the IAM extracted from the tissue are likely to be minor. Levels of IAM in sterile-grown seedlings were highest in imbibed seeds and then sharply declined during the first 24 h of germination and further during early seedling development to remain below 20–30 pmol g–1 fresh weight throughout the rosette stage. The decline in indole-3-aetic acid (IAA) levels during germination was paralleled by a similar decline in IAM levels. Recombinant nitrilase isoforms 1, 2 and 3, known to synthesize IAA from indole-3-acetonitrile, were shown to produce significant amounts of IAM in vitro as a second end product of the reaction besides IAA. NIT2 was earlier shown to be highly expressed in developing and in mature A. thaliana embryos, and NIT3 is the dominantly active gene in the hypocotyl and the cotyledons of young, germinating seedlings. Collectively, these data suggest that the elevated levels of IAM in seeds and germinating seedlings result from nitrilase action on indole-3-acetonitrile, a metabolite produced in the plants presumably from glucobrassicin turnover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the Agrobacterium T-DNA genes, rolB, rolC, orf13, orf8, lso, 6b and several other genes encode weakly homologous proteins with remarkable effects on plant growth. The 6b oncogene induces tumors and enations. In order to study its properties we have used transgenic tobacco plants that carry a dexamethasone-inducible 6b gene, dex-T-6b. Upon induction, dex-T-6b plants develop a large array of morphological modifications, some of which involve abnormal cell expansion. In the present investigation, dex-T-6b-induced expansion was studied in intact leaves and an in vitro leaf disc system. Although T-6b and indole-3-acetic acid (IAA) both induced expansion and were non-additive, T-6b expression did not increase IAA levels, nor did it induce an IAA-responsive gene. Fusicoccin (FC) is known to stimulate expansion by increasing cell wall plasticity. T-6b- and FC-induced expansion were additive at saturating FC concentrations, indicating that T-6b does not act by a similar mechanism to FC. T-6b expression led to higher leaf osmolality values, in contrast to FC, suggesting that the T-6b gene induces expansion by increasing osmolyte concentrations. Metabolite profiling showed that glucose and fructose played a major role in this increase. We infer that T-6b disrupts the osmoregulatory controls that govern cell expansion during development and wound healing.