337 resultados para MicroRNA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The obligate endosymbiont Wolbachia pipientis is found in a wide range of invertebrates where they are best known for manipulating host reproduction. Recent studies have shown that Wolbachia also can modulate the lifespan of host insects and interfere with the development of human pathogens in mosquito vectors. Despite considerable study, very little is known about the molecular interactions between Wolbachia and its hosts that might mediate these effects. Using microarrays, we show that the microRNA (miRNA) profile of the mosquito, Aedes aegypti, is significantly altered by the wMelPop-CLA strain of W. pipientis. We found that a host miRNA (aae-miR-2940) is induced after Wolbachia infection in both mosquitoes and cell lines. One target of aae-miR-2940 is the Ae. aegypti metalloprotease gene. Interestingly, expression of the target gene was induced after Wolbachia infection, ectopic expression of the miRNA independent of Wolbachia, or transfection of an artificial mimic of the miRNA into mosquito cells. We also confirmed the interaction of aae-miR-2940 with the target sequences using GFP as a reporter gene. Silencing of the metalloprotease gene in both Wolbachia-infected cells and adult mosquitoes led to a significant reduction in Wolbachia density, as did inhibition of the miRNA in cells. These results indicate that manipulation of the mosquito metalloprotease gene via aae-miR-2940 is crucial for efficient maintenance of the endosymbiont. This report shows how Wolbachia alters the host miRNA profile and provides insight into the mechanisms of host manipulation used by this widespread endosymbiont.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format. Known and novel miRNA expression levels, as measured by the number of reads, are displayed in an interface, which shows each RNAseq read relative to the pre-miRNA hairpin. The secondary pre-miRNA structure and read locations for each predicted miRNA are shown and kept in a separate figure file. Moreover, the target genes of known and novel miRNAs are predicted using the TargetScan algorithm, and the targets are ranked according to the confidence score. miRDeep* is an integrated standalone application where sequence alignment, pre-miRNA secondary structure calculation and graphical display are purely Java coded. This application tool can be executed using a normal personal computer with 1.5 GB of memory. Further, we show that miRDeep* outperformed existing miRNA prediction tools using our LNCaP and other small RNAseq datasets. miRDeep* is freely available online at http://www.australianprostatecentre.org/research/software/mirdeep-star

Relevância:

10.00% 10.00%

Publicador:

Resumo:

microRNAs are small, non-coding RNAs that influence gene expression on a post-transcriptional level. They participate in diverse biological pathways and may act as either tumor suppressor genes or oncogenes. As they may have an effect on thousands of target mRNAs, single-nucleotide polymorphisms in microRNA genes might have major functional consequences, because the microRNA's properties and/or maturation may change. miR-196a has been reported to be aberrantly expressed in breast cancer tissue. Additionally, the SNP rs11614913 in hsa-mir-196a-2 has been found to be associated with breast cancer risk in some studies although not in others. This study evaluated the association between rs11614913 and breast cancer risk in a Caucasian case-control cohort in Queensland, Australia. Results do not support an association of the tested hsa-mir-196a-2 polymorphism with breast cancer susceptibility in this cohort. As there is a discrepancy between our results and previous findings, it is important to assess the role of rs11614913 in breast cancer by further larger studies investigating different ethnic groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aim: Since microRNAs (miRNAs) act as translational regulators of multiple genes, single nucleotide polymorphisms (SNP) in them can have potentially wide-ranging effects. Using an association approach, this research examined the effects of the rs6505162 SNP, an A>C polymorphism located in the premiRNA region of miR-423, on breast cancer development. Materials and Methods: Caucasian Australian women with breast cancer and controls matched for age and ethnicity were genotyped for rs6505162 and their genotypic and allelic frequencies analysed for significant differences. Results: Analysis indicated that there were significant differences between the case and control populations (χ 2=6.70, p=0.035), with the CC genotype conferring reduced risk of breast cancer development (odds ratio=0.50 95% confidence interval=0.27-0.92, p=0.03). Conclusion: Further functional research is required to determine the mechanism of action of this SNP on miRNA function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epstein Barr virus (EBV) is a common γ-herpes virus, infecting approximately 90% of the world‟s population. It is also one of the first known viruses known to be oncogenic, and is associated with a number of tumour types, primarily lymphomas. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and many human miRNAs have been associated with the development of malignancies including cancer. EBV was the first human virus identified to express miRNAs and encodes more than 40 miRNAs within its genome. Yet, an understanding of the targets of EBV-miRNAs, and thereby the function of them in pathogenesis remains sadly limited. This study identifies a potential novel target of EBV-miRNAs, MECP2 and characterises the miRNA:mRNA interactions between two previously identified novel targets; Bim and EBF1. In particular, this study focuses upon the interaction between EBF1 and the EBV-miRNA BART11-5p, demonstrating a 151bp region of the EBF1 3‟UTR that is capable of mediating the silencing of luciferase expression by BART11-5p but is not capable of silencing a full length EBF1-3‟UTR luciferase construct. This study provides evidence that EBF1 may be a target of one or more EBV-miRNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In plants, silencing of mRNA can be transmitted from cell to cell and also over longer distances from roots to shoots. To investigate the long-distance mechanism, WT and mutant shoots were grafted onto roots silenced for an mRNA. We show that three genes involved in a chromatin silencing pathway, NRPD1a encoding RNA polymerase IVa, RNA-dependent RNA polymerase 2 (RDR2), and DICER-like 3 (DCL3), are required for reception of long-distance mRNA silencing in the shoot. A mutant representing a fourth gene in the pathway, argonaute4 (ago4), was also partially compromised in the reception of silencing. This pathway produces 24-nt siRNAs and resulted in decapped RNA, a known substrate for amplification of dsRNA by RDR6. Activation of silencing in grafted shoots depended on RDR6, but no 24-nt siRNAs were detected in mutant rdr6 shoots, indicating that RDR6 also plays a role in initial signal perception. After amplification of decapped transcripts, DCL4 and DCL2 act hierarchically as they do in antiviral resistance to produce 21- and 22-nt siRNAs, respectively, and these guide mRNA degradation. Several dcl genotypes were also tested for their capacity to transmit the mobile silencing signal from the rootstock. dcl1-8 and a dcl2 dcl3 dcl4 triple mutant are compromised in micro-RNA and siRNA biogenesis, respectively, but were unaffected in signal transmission. © 2007 by The National Academy of Sciences of the USA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forward genetic screens have identified numerous genes involved in development and metabolism, and remain a cornerstone of biological research. However, to locate a causal mutation, the practice of crossing to a polymorphic background to generate a mapping population can be problematic if the mutant phenotype is difficult to recognize in the hybrid F2 progeny, or dependent on parental specific traits. Here in a screen for leaf hyponasty mutants, we have performed a single backcross of an Ethane Methyl Sulphonate (EMS) generated hyponastic mutant to its parent. Whole genome deep sequencing of a bulked homozygous F2 population and analysis via the Next Generation EMS mutation mapping pipeline (NGM) unambiguously determined the causal mutation to be a single nucleotide polymorphisim (SNP) residing in HASTY, a previously characterized gene involved in microRNA biogenesis. We have evaluated the feasibility of this backcross approach using three additional SNP mapping pipelines; SHOREmap, the GATK pipeline, and the samtools pipeline. Although there was variance in the identification of EMS SNPs, all returned the same outcome in clearly identifying the causal mutation in HASTY. The simplicity of performing a single parental backcross and genome sequencing a small pool of segregating mutants has great promise for identifying mutations that may be difficult to map using conventional approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

tRNA-derived RNA fragments (tRFs) are 19mer small RNAs that associate with Argonaute (AGO) proteins in humans. However, in plants, it is unknown if tRFs bind with AGO proteins. Here, using public deep sequencing libraries of immunoprecipitated Argonaute proteins (AGO-IP) and bioinformatics approaches, we identified the Arabidopsis thaliana AGO-IP tRFs. Moreover, using three degradome deep sequencing libraries, we identified four putative tRF targets. The expression pattern of tRFs, based on deep sequencing data, was also analyzed under abiotic and biotic stresses. The results obtained here represent a useful starting point for future studies on tRFs in plants. © 2013 Loss-Morais et al.; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that in zebrafish, the microRNA miR-451 plays a crucial role in promoting erythroid maturation, in part via its target transcript gata2. Zebrafish miR-144 and miR-451 are processed from a single precursor transcript selectively expressed in erythrocytes. In contrast to other hematopoietic mutants, the ze-brafish mutant meunier (mnr) showed intact erythroid specification but diminished miR-144/451 expression. Although erythropoiesis initiated normally in mnr, erythrocyte maturation was morphologically retarded. Morpholino knockdown of miR-451 increased erythrocyte immaturity in wild-type embryos, and miR-451 RNA duplexes partially rescued erythroid maturation in mnr, demonstrating a requirement and role for miR-451 in erythro-cyte maturation. mnr provided a selectively miR-144/451-deficient background, facilitating studies to discern miRNA function and validate candidate targets. Among computer-predicted miR-451 targets potentially mediating these biologic effects, the pro-stem cell transcription factor gata2 was an attractive candidate. In vivo reporter assays validated the predicted miR-451/gata2-3'UTR interaction, gata2 down-regulation was delayed in miR-451-knockdown and mnr embryos, and gata2 knockdown partially restored erythroid maturation in mnr, collectively confirming gata2down-regulation as pivotal for miR-451-driven erythroid maturation. These studies define a new genetic pathway promoting erythroid maturation (mnr/miR-451/gata2) and provide a rare example of partial rescue of a mutant phenotype solely by miRNA overexpression. © 2009 by The American Society of Hematology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA interference (RNAi) is widely used to silence genes in plants and animals. It operates through the degradation of target mRNA by endonuclease complexes guided by approximately 21 nucleotide (nt) short interfering RNAs (siRNAs). A similar process regulates the expression of some developmental genes through approximately 21 nt microRNAs. Plants have four types of Dicer-like (DCL) enzyme, each producing small RNAs with different functions. Here, we show that DCL2, DCL3 and DCL4 in Arabidopsis process both replicating viral RNAs and RNAi-inducing hairpin RNAs (hpRNAs) into 22-, 24- and 21 nt siRNAs, respectively, and that loss of both DCL2 and DCL4 activities is required to negate RNAi and to release the plant's repression of viral replication. We also show that hpRNAs, similar to viral infection, can engender long-distance silencing signals and that hpRNA-induced silencing is suppressed by the expression of a virus-derived suppressor protein. These findings indicate that hpRNA-mediated RNAi in plants operates through the viral defence pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants fight viral infections with enzymes that digest viral RNA, but viruses retaliate with proteins that suppress these enzymes. To boost their antiviral response plants deploy enzymes with redundant functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here that the expression of endogenous microRNAs (miRNAs) can be efficiently silenced in Arabidopsis thaliana (Arabidopsis) using artificial miRNA (amiRNA) technology. We demonstrate that an amiRNA designed to target a mature miRNA directs silencing against all miRNA family members, whereas an amiRNA designed to target the stem-loop region of a miRNA precursor transcript directs silencing against only the individual family member targeted. Furthermore, our results indicate that amiRNAs targeting both the mature miRNA and stem-loop sequence direct RNA silencing through cleavage of the miRNA precursor transcript, which presumably occurs in the nucleus of a plant cell during the initial stages of miRNA biogenesis. This suggests that small RNA (sRNA)-guided RNA cleavage in plants occurs not only in the cytoplasm, but also in the nucleus. Many plant miRNA gene families have been identified via sequencing and bioinformatic analysis, but, to date, only a small tranche of these have been functionally characterized due to a lack of effective forward or reverse genetic tools. Our findings therefore provide a new and powerful reverse-genetic tool for the analysis of miRNA function in plants. © The Author 2010. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPP and IPPE, SIBS, CAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dicers are associated with double-stranded RNA-binding proteins (dsRBPs) in animals. In the plant, Arabidopsis, there are four dicer-like (DCL) proteins and five potential dsRBPs. These DCLs act redundantly and hierarchically. However, we show there is little or no redundancy or hierarchy amongst the DRBs in their DCL interactions. DCL1 operates exclusively with DRB1 to produce micro (mi)RNAs, DCL4 operates exclusively with DRB4 to produce trans-acting (ta) siRNAs and 21nt siRNAs from viral RNA. DCL2 and DCL3 produce viral siRNAs without requiring assistance from any dsRBP. DRB2, DRB3 and DRB5 appear unnecessary for mi-, tasi-, viral si-, or heterochromatinising siRNA production but act redundantly in a developmental pathway. © 2008 Federation of European Biochemical Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A library containing approximately 40,000 small RNA sequences was constructed for Brassica napus. Analysis of 3025 sequences obtained from this library resulted in the identification of 11 conserved miRNA families, which were validated by secondary structure prediction using surrounding sequences in the Brassica genome. Two 21 nt small RNA sequences reside within the arm of a pre-miRNA like stem-loop structure, making them likely candidates for novel non-conserved miRNAs in B. napus. Most of the conserved miRNAs were expressed at similar levels in a F1 hybrid B. napus line and its four double haploid progeny that showed marked variations in phenotypes, but many were differentially expressed between B. napus and Arabidopsis. The miR169 family was expressed at high levels in young leaves and stems, but was undetectable in roots and mature leaves, suggesting that miR169 expression is developmentally regulated in B. napus. © 2007 Federation of European Biochemical Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most multicellular organisms regulate developmental transitions by microRNAs, which are generated by an enzyme, Dicer. Insects and fungi have two Dicer-like genes, and many animals have only one, yet the plant, Arabidopsis, has four. Examining the poplar and rice genomes revealed that they contain five and six Dicer-like genes, respectively. Analysis of these genes suggests that plants require a basic set of four Dicer types which were present before the divergence of mono- and dicotyledonous plants (∼200 million years ago), but after the divergence of plants from green algae. A fifth type of Dicer seems to have evolved in monocots. © 2006 Federation of European Biochemical Societies.