181 resultados para Curcumin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Odontológicas - FOAR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper was prepared a polymorphic from of curcumin a natural bioactive compound widely used in Indian medicine in the treatment of a range of illnesses. The preparation was the polymorphic crystallization process and solvent mixtures of organic solvents in order to change the dielectric constant of the solution to obtain crystals. The crystal of curcumin has been studied and characterized by absorption spectroscopic in the infrared, X-ray diffraction powder method and by thermo analytical techniques: thermogravimetry and differential therma analysis (TG-DTA) and differential scanning calorimetry (DSC). The DSC of the pure compound (MP=180,19ºC) showed some differences compared the compound crystallized (MP=176.63ºC) in a mixture of solvents thus indicating the phenomenon of polymorphism, and TG-DTA curve of the compound crystallized showed that this was not a solvatomorphic. Finnally the techniques of X-ray diffraction technique FTIR and powder showed a structural change in the compound crystallized, profile-based graphics when compared to the pure compound, which proves that the compound crystallized it is a polymorph

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turmeric (Curcuma longa L.), which has been used for long time as a spice, food preservative and coloring agent, is a rich source of beneficial phenolic compounds identified as curcuminoids. These phenolic compounds are known for their antioxidant, anti-inflammatory and antimutagenic properties, among others. On the other hand, they are very susceptible to oxidation, requiring protection against oxygen, light and heat. This protection can be achieved by microencapsulation. In this work, the characteristics and the stability of turmeric oleoresin encapsulated by freeze-drying using mixtures of maltodextrin and gelatin as wall materials were studied. Encapsulated turmeric oleoresin was stored at –20, 25 and 60 °C, in the absence of light, and analyzed over a period of 35 days for curcumin and total phenolic contents and color. Results showed that the samples produced with 26% maltodextrin/0.6% gelatin and 22% maltodextrin/3% gelatin presented good encapsulation efficiencies and solubility. In general, the method of encapsulation employed originated products with satisfactory thermal stability, although the encapsulated materials with a higher proportion of maltodextrin in relation to gelatin had better stabilities, especially at –20 and 25 °C temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência Odontólogica - FOA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of this study were to assess the turmeric oleoresin microencapsulation by freeze-drying with modified starch/gelatin and to evaluate its stability during storage at different temperatures and light. Encapsulated turmeric oleoresin w stored at −20, 25 and 60C, in the absence of light, and at 25C in the presence of light, and analyzed over a period of 6 weeks for curcumin and total phenolic contents and color. The different concentrations of wall material showed no significant effect on the curcumin retention. The best conditions for microencapsulation of turmeric oleoresin were: wall material composed of 30 g/100 g of modified starch + 1 g/100 g gelatin and mechanical homogenization. Encapsulated material was more stable during storage at −20C and less stable at 25C in the presence of light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)