987 resultados para AVIAN TRYPANOSOMES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wild waterfowl populations form a natural reservoir of Avian Influenza (AI) virus, and fears exist that these birds may contribute to an AI pandemic by spreading the virus along their migratory flyways. Observational studies suggest that individuals infected with AI virus may delay departure from migratory staging sites. Here, we explore the epidemiological dynamics of avian influenza virus in a migrating mallard (Anas platyrhynchos) population with a specific view to understanding the role of infection-induced migration delays on the spread of virus strains of differing transmissibility. We develop a host-pathogen model that combines the transmission dynamics of influenza with the migration, reproduction and mortality of the host bird species. Our modeling predicts that delayed migration of individuals influences both the timing and size of outbreaks of AI virus. We find that (1) delayed migration leads to a lower total number of cases of infection each year than in the absence of migration delay, (2) when the transmission rate of a strain is high, the outbreak starts at the staging sites at which birds arrive in the early part of the fall migration, (3) when the transmission rate is low, infection predominantly occurs later in the season, which is further delayed when there is a migration delay. As such, the rise of more virulent AI strains in waterfowl could lead to a higher prevalence of infection later in the year, which could change the exposure risk for farmed poultry. A sensitivity analysis shows the importance of generation time and loss of immunity for the effect of migration delays. Thus, we demonstrate, in contrast to many current transmission risk models solely using empirical information on bird movements to assess the potential for transmission, that a consideration of infection-induced delays is critical to understanding the dynamics of AI infection along the entire flyway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual variation in infection modulates both the dynamics of pathogens and their impact on host populations. It is therefore crucial to identify differential patterns of infection and understand the mechanisms responsible. Yet our understanding of infection heterogeneity in wildlife is limited, even for important zoonotic host-pathogen systems, owing to the intractability of host status prior to infection. Using novel applications of stable isotope ecology and eco-immunology, we distinguish antecedent behavioural and physiological traits associated with avian influenza virus (AIV) infection in free-living Bewick's swans (Cygnus columbianus bewickii). Swans infected with AIV exhibited higher serum δ13C (-25.3 ± 0.4) than their non-infected counterparts (-26.3±0.2). Thus, individuals preferentially foraging in aquatic rather than terrestrial habitats experienced a higher risk of infection, suggesting that the abiotic requirements of AIV give rise to heterogeneity in pathogen exposure. Juveniles were more likely to be infected (30.8% compared with 11.3% for adults), shed approximately 15-fold higher quantity of virus and exhibited a lower specific immune response than adults. Together, these results demonstrate the potential for heterogeneity in infection to have a profound influence on the dynamics of pathogens, with concomitant impacts on host habitat selection and fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-distance migratory birds are often considered extreme athletes, possessing a range of traits that approach the physiological limits of vertebrate design. In addition, their movements must be carefully timed to ensure that they obtain resources of sufficient quantity and quality to satisfy their high-energy needs. Migratory birds may therefore be particularly vulnerable to global change processes that are projected to alter the quality and quantity of resource availability. Because long-distance flight requires high and sustained aerobic capacity, even minor decreases in vitality can have large negative consequences for migrants. In the light of this, we assess how current global change processes may affect the ability of birds to meet the physiological demands of migration, and suggest areas where avian physiologists may help to identify potential hazards. Predicting the consequences of global change scenarios on migrant species requires (i) reconciliation of empirical and theoretical studies of avian flight physiology; (ii) an understanding of the effects of food quality, toxicants and disease on migrant performance; and (iii) mechanistic models that integrate abiotic and biotic factors to predict migratory behaviour. Critically, a multi-dimensional concept of vitality would greatly facilitate evaluation of the impact of various global change processes on the population dynamics of migratory birds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Informative Bayesian priors can improve the precision of estimates in ecological studies or estimate parameters for which little or no information is available. While Bayesian analyses are becoming more popular in ecology, the use of strongly informative priors remains rare, perhaps because examples of informative priors are not readily available in the published literature.

2. Dispersal distance is an important ecological parameter, but is difficult to measure and estimates are scarce. General models that provide informative prior estimates of dispersal distances will therefore be valuable.

3. Using a world-wide data set on birds, we develop a predictive model of median natal dispersal distance that includes body mass, wingspan, sex and feeding guild. This model predicts median dispersal distance well when using the fitted data and an independent test data set, explaining up to 53% of the variation.

4. Using this model, we predict a priori estimates of median dispersal distance for 57 woodland-dependent bird species in northern Victoria, Australia. These estimates are then used to investigate the relationship between dispersal ability and vulnerability to landscape-scale changes in habitat cover and fragmentation.

5. We find evidence that woodland bird species with poor predicted dispersal ability are more vulnerable to habitat fragmentation than those species with longer predicted dispersal distances, thus improving the understanding of this important phenomenon.

6. The value of constructing informative priors from existing information is also demonstrated. When used as informative priors for four example species, predicted dispersal distances reduced the 95% credible intervals of posterior estimates of dispersal distance by 8-19%. Further, should we have wished to collect information on avian dispersal distances and relate it to species' responses to habitat loss and fragmentation, data from 221 individuals across 57 species would have been required to obtain estimates with the same precision as those provided by the general model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isotopic discrimination and turn-over are fundamental to the application of stable isotope ecology in animals. However, detailed information for specific tissues and species are widely lacking, notably for herbivorous species. We provide details on tissue-specific carbon and nitrogen discrimination and turn-over times from food to blood, feathers, claws, egg tissues and offspring down feathers in four species of herbivorous waterbirds. Source-to-tissue discrimination factors for carbon (δ13C) and nitrogen stable isotope ratios (δ15N) showed little variation across species but varied between tissues. Apparent discrimination factors ranged between −0.5 to 2.5‰ for δ13C and 2.8 to 5.2‰ for δ15N, and were more similar between blood components than between keratinous tissues or egg tissue. Comparing these results with published data from other species we found no effect of foraging guild on discrimination factors for carbon but a significant foraging-guild effect for nitrogen discrimination factors.

Turn-over of δ13C in tissues was most rapid in blood plasma, with a half-life of 4.3 d, whereas δ13C in blood cells had a half-life of approximately 32 d. Turn-over times for albumen and yolk in laying females were similar to those of blood plasma, at 3.2 and 6.0 d respectively. Within yolk, we found decreasing half-life times of δ13C from inner yolk (13.3 d) to outer yolk (3.1 d), related to the temporal pattern of tissue formation.

We found similarities in tissue-specific turn-over times across all avian species studied to date. Yet, while generalities regarding discrimination factors and tissue turn-over times can be made, a large amount of variation remains unexplained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluid component of blood is widely used in ecophysiological investigations, including measures of immune function and stable isotope ecology. After blood collection, delayed separation of blood extracellular fluids from red blood cells is known to affect the concentration of a wide range of biochemical compounds in the resulting fluid, as does prevention of clotting (producing plasma) when compared with blood allowed to clot (producing serum). One challenge when investigating immune function and stable isotope ecology, therefore, is discriminating variation because of the effect of the biological factors of interest from potential methodological artefacts. This study assesses how seven widely used measures of immune function and stable isotope composition respond both to delayed separation of the cellular and fluid components and to the clotting of blood samples from two species of waterfowl. Samples that remained uncentrifuged for up to 12 h did not differ from those centrifuged within 15 min of sampling from the same individuals, indicating that samples from a wide range of field conditions may remain highly comparable. However, the outcome of three of the four immunological assays and two of the three isotopic analyses was highly dependent on the type of fluid, with higher immunological activity and higher relative concentrations of heavy carbon and total nitrogen in plasma compared to serum. Researchers interested in immune function and stable isotope ecology may obtain the most useful results by ensuring that they use a single fluid type in their investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand and better control AI outbreaks, not only is it necessary to understand the biology of influenza viruses but also the natural history of the hosts in which these viruses multiply and the different environments in which the hosts and viruses interact. This includes the anthropogenic factors that have influenced where, whether and how avian influenza (AI) viruses can replicate and transmit between wild birds and poultry, and between poultry and mammals, including factors influencing uptake and application of appropriate control and preventive measures for AI. This disease represents one of the best examples of the need for a ‘One Health’ approach to understand and tackle disease with an increasing need to comprehend and unravel the environmental and ecology drivers that affect the virus host interactions. This forum piece seeks to bring together these aspects through a review of recent outbreaks and how a deeper understanding of all three aspects, the virus, the host and the environment, can help us better manage future outbreaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locusts and grasshoppers cause considerable economic damage to agriculture worldwide. The Australian Plague Locust Commission uses multiple pesticides to control locusts in eastern Australia. Avian exposure to agricultural pesticides is of conservation concern, especially in the case of rare and threatened species. The aim of this study was to evaluate the probability of pesticide exposure of native avian species during operational locust control based on knowledge of species occurrence in areas and times of application. Using presence-absence data provided by the Birds Australia Atlas for 1998 to 2002, we developed a series of generalized linear models to predict avian occurrences on a monthly basis in 0.5 degrees grid cells for 280 species over 2 million km2 in eastern Australia. We constructed species-specific models relating occupancy patterns to survey date and location, rainfall, and derived habitat preference. Model complexity depended on the number of observations available. Model output was the probability of occurrence for each species at times and locations of past locust control operations within the 5-year study period. Given the high spatiotemporal variability of locust control events, the variability in predicted bird species presence was high, with 108 of the total 280 species being included at least once in the top 20 predicted species for individual space-time events. The models were evaluated using field surveys collected between 2000 and 2005, at sites with and without locust outbreaks. Model strength varied among species. Some species were under- or over-predicted as times and locations of interest typically did not correspond to those in the prediction data set and certain species were likely attracted to locusts as a food source. Field surveys demonstrated the utility of the spatially explicit species lists derived from the models but also identified the presence of a number of previously unanticipated species. These results also emphasize the need for special consideration of rare and threatened species that are poorly predicted by presence-absence models. This modeling exercise was a useful a priori approach in species risk assessments to identify species present at times and locations of locust control applications, and to discover gaps in our knowledge and need for further focused data collection.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olfaction is an ancient sensory capability, and yet while it is now widely recognized that birds have olfactory mechanisms, use of the sense within a social context has been largely overlooked. In our study, we aimed to determine, for the first time, whether plumage odour may contribute to avian subspecies discrimination. We used a species complex, the crimson rosella, Platycercus elegans, which exhibits large geographical and phenotypic differences. Across 2 years in a wild population of P.elegans elegans we tested whether females at the nest could: (1) discriminate odours of conspecifics; (2) discriminate odours of subspecies; (3) discriminate odours of sexes of conspecifics; and (4) habituate at different rates to odour treatments. We found that female response differed between odours of feathers of consubspecifics, heterosubspecifics, heterospecific controls and sham controls and between odours of sexes of conspecifics. Across all odour treatments, we found habituation to the odour and the rate of habituation differed between odour treatments. Our results indicate that P.e. elegans females are able to discriminate conspecifics, consubspecifics and sexes based on plumage odour. To our knowledge, this is the first work to show that birds of a certain subspecies can discriminate the odour of its own subspecies from that of other subspecies. Our findings suggest that olfaction in birds may play a larger role than hitherto considered, and may even act as a signal to maintain or promote population divergence. © 2014 The Association for the Study of Animal Behaviour.