518 resultados para proteome


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a tandem LC-MS (Waters Xevo TQ) MRM-based MS method was developed for rapid, broad profiling of hydrophilic metabolites from biological samples, in either positive or negative ion modes without the need for an ion pairing reagent, using a reversed-phase pentafluorophenylpropyl (PFPP) column. The developed method was successfully applied to analyze various biological samples from C57BL/6 mice, including urine, duodenum, liver, plasma, kidney, heart, and skeletal muscle. As result, a total 112 of hydrophilic metabolites were detected within 8 min of running time to obtain a metabolite profile of the biological samples. The analysis of this number of hydrophilic metabolites is significantly faster than previous studies. Classification separation for metabolites from different tissues was globally analyzed by PCA, PLS-DA and HCA biostatistical methods. Overall, most of the hydrophilic metabolites were found to have a "fingerprint" characteristic of tissue dependency. In general, a higher level of most metabolites was found in urine, duodenum, and kidney. Altogether, these results suggest that this method has potential application for targeted metabolomic analyzes of hydrophilic metabolites in a wide ranges of biological samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malignant pleural mesothelioma is an aggressive thoracic malignancy associated with exposure to asbestos, and its incidence is anticipated to increase during the first half of this century. Chemotherapy is the mainstay of treatment, yet sufficiently robust evidence to substantiate the current standard of care has emerged only in the past 5 years. This Review summarizes the evidence supporting the clinical activity of chemotherapy, discusses the use of end points for its assessment and examines the influence of clinical and biochemical prognostic factors on the natural history of malignant pleural mesothelioma. Early-phase clinical trials of second-line and novel agents are emerging from an increased understanding of mesothelioma cell biology. Coupled with high-quality translational research, such developments have real potential to improve the outlook of patients at a time of increasing incidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesothelioma is a rare malignancy arising from mesothelial cells lining the pleura and peritoneum. Advances in modern technology have allowed the development of array based approaches to the study of disease allowing researchers the opportunity to study many genes or proteins in a high-throughput fashion. This review describes the current knowledge surrounding array based approaches with respect to mesothelioma research. © 2009 by the International Association for the Study of Lung Cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In eukaryotes, numerous complex sub-cellular structures exist. The majority of these are delineated by membranes. Many proteins are trafficked to these in order to be able to carry out their correct physiological function. Assigning the sub-cellular location of a protein is of paramount importance to biologists in the elucidation of its role and in the refinement of knowledge of cellular processes by tracing certain activities to specific organelles. Membrane proteins are a key set of proteins as these form part of the boundary of the organelles and represent many important functions such as transporters, receptors, and trafficking. They are, however, some of the most challenging proteins to work with due to poor solubility, a wide concentration range within the cell and inaccessibility to many of the tools employed in proteomics studies. This review focuses on membrane proteins with particular emphasis on sub-cellular localization in terms of methodologies that can be used to determine the accurate location of membrane proteins to organelles. We also discuss what is known about the membrane protein cohorts of major organelles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub-cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome-wide localisation in scenarios wherein perturbation may prompt dynamic re-distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub-cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single-gradient data, we observe significant improvement in protein-organelle association via both a non-linear support vector machine algorithm and partial least-squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub-cellular organelles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kallikrein-related peptidases, in particular KLK4, 5, 6 and 7 (4-7), often have elevated expression levels in ovarian cancer. In OV-MZ-6 ovarian cancer cells, combined expression of KLK4-7 reduces cell adhesion and increases cell invasion and resistance to paclitaxel. The present work investigates how KLK4-7 shape the secreted proteome ("secretome") and proteolytic profile ("degradome") of ovarian cancer cells. The secretome comparison consistently identified >900 proteins in three replicate analyses. Expression of KLK4-7 predominantly affected the abundance of proteins involved in cell-cell communication. Among others, this includes increased levels of transforming growth factor β-1 (TGFβ-1). KLK4-7 co-transfected OV-MZ-6 cells share prominent features of elevated TGFβ-1 signaling, including increased abundance of neural cell adhesion molecule L1 (L1CAM). Augmented levels of TGFβ-1 and L1CAM upon expression of KLK4-7 were corroborated in vivo by an ovarian cancer xenograft model. The degradomic analysis showed that KLK4-7 expression mostly affected cleavage sites C-terminal to arginine, corresponding to the preference of kallikreins 4, 5 and 6. Putative kallikrein substrates include chemokines, such as growth differentiation factor 15 (GDF 15) and macrophage migration inhibitory factor (MIF). Proteolytic maturation of TGFβ-1 was also elevated. KLK4-7 have a pronounced, yet non-degrading impact on the secreted proteome, with a strong association between these proteases and TGFβ-1 signaling in tumor biology. © 2013 Federation of European Biochemical Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial siderophores are a group of chemically diverse, virulence-associated secondary metabolites whose expression exerts metabolic costs. A combined bacterial genetic and metabolomic approach revealed differential metabolomic impacts associated with biosynthesis of different siderophore structural families. Despite myriad genetic differences, the metabolome of a cheater mutant lacking a single set of siderophore biosynthetic genes more closely approximate that of a nonpathogenic K12 strain than its isogenic, uropathogen parent strain. Siderophore types associated with greater metabolomic perturbations are less common among human isolates, suggesting that metabolic costs influence success in a human population. Although different siderophores share a common iron acquisition function, our analysis shows how a metabolomic approach can distinguish their relative metabolic impacts in E.coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Until recently, the low-abundance (LA) range of the serum proteome was an unexplored reservoir of diagnostic information. Today it is increasingly appreciated that a diagnostic goldmine of LA biomarkers resides in the blood stream in complexed association with more abundant higher molecular weight carrier proteins such as albumin and immunoglobulins. As we now look to the possibility of harvesting these LA biomarkers more efficiently through engineered nano-scale particles, mathematical approaches are needed in order to reveal the mechanisms by which blood carrier proteins act as molecular 'mops' for LA diagnostic cargo, and the functional relationships between bound LA biomarker concentrations and other variables of interest such as biomarker intravasation and clearance rates and protein half-lives in the bloodstream. Here we show, by simple mathematical modeling, how the relative abundance of large carrier proteins and their longer half-lives in the bloodstream work together to amplify the total blood concentration of these tiny biomarkers. The analysis further suggests that alterations in the production of biomarkers lead to gradual rather than immediate changes in biomarker levels in the blood circulation. The model analysis also points to the characteristics of artificial nano-particles that would render them more efficient harvesters of tumor biomarkers in the circulation, opening up possibilities for the early detection of curable disease, rather than simply better detection of advanced disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While genomics provide important information about the somatic genetic changes, and RNA transcript profiling can reveal important expression changes that correlate with outcome and response to therapy, it is the proteins that do the work in the cell. At a functional level, derangements within the proteome, driven by post-translational and epigenetic modifications, such as phosphorylation, is the cause of a vast majority of human diseases. Cancer, for instance, is a manifestation of deranged cellular protein molecular networks and cell signaling pathways that are based on genetic changes at the DNA level. Importantly, the protein pathways contain the drug targets in signaling networks that govern overall cellular survival, proliferation, invasion and cell death. Consequently, the promise of proteomics resides in the ability to extend analysis beyond correlation to causality. A critical gap in the information knowledge base of molecular profiling is an understanding of the ongoing activity of protein signaling in human tissue: what is activated and “in use” within the human body at any given point in time. To address this gap, we have invented a new technology, called reverse phase protein microarrays, that can generate a functional read-out of cell signaling networks or pathways for an individual patient obtained directly from a biopsy specimen. This “wiring diagram” can serve as the basis for both, selection of a therapy and patient stratification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass spectrometric analysis of the low-molecular weight (LMW) range of the serum/plasma proteome is revealing the existence of large numbers of previously unknown peptides and protein fragments predicted to be derived from low- abundance proteins. This raises the question of why such low abundance molecules would be retained at detectable levels in the circulation, instead of being rapidly cleared and excreted. Theoretical models of biomarker production and association with serum carrier proteins have been developed to elucidate the mechanisms governing biomarker half-life in the bloodstream. These models predict that the vast majority of LMW biomarkers exist in association with circulating high molecular mass carrier proteins. Moreover, the total serum/ plasma concentration of the biomarker is largely determined by the clearance rate of the carrier protein, not the free-phase biomarker clearance itself. These predictions have been verified experimentally using molecular mass fractionation of human serum before mass spectrometry sequence analysis. These principles have profound implications for biomarker discovery and measurement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metarhizium anisopliae is a naturally occurring cosmopolitan fungus infecting greyback canegrubs (Dermolepida albohirtum). The main molecular factors involved in the complex interactions occurring between the greyback canegrubs and M. anisopliae (FI-1045) were investigated by comparing the proteomes of healthy canegrubs, canegrubs infected with Metarhizium and fungus only. Differentially expressed proteins from the infected canegrubs were subjected to mass spectrometry to search for pathogenicity related proteins. Immune-related proteins of canegrubs identified in this study include cytoskeletal proteins (actin), cell communication proteins, proteases and peptidases. Fungal proteins identified include metalloproteins, acyl-CoA, cyclin proteins and chorismate mutase. Comparative proteome analysis provided a view into the cellular reactions triggered in the canegrub in response to the fungal infection at the onset of biological control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial tail-specific proteases (Tsps) have been attributed a wide variety of functions including intracellular virulence, cell wall morphology, proteolytic signal cascades and stress response. This study tested the hypothesis that Tsp has a key function for the transmissive form of Legionella pneumophila. A tsp mutant was generated in Legionella pneumophila 130b and the characteristics of this strain and the isogenic wild-type were examined using a range of growth and proteomic analyses. Recombinant Tsp protein was also produced and analyzed. The L. pneumophila tsp mutant showed no defect in growth on rich media or during thermo-osmotic stress conditions. In addition, no defects in cellular morphology were observed when the cells were examined using transmission electron microscopy. Purified recombinant Tsp was found to be an active protease with a narrow substrate range. Proteome analysis using iTRAQ (5% coverage of the proteome) found that, of those proteins detected, only 5 had different levels in the tsp mutant compared to the wild type. ACP (Acyl Carrier Protein), which has a key role for Legionella differentiation to the infectious form, was reduced in the tsp mutant; however, tsp(-) was able to infect and replicate inside macrophages to the same extent as the wild type. Combined, these data demonstrate that Tsp is a protease but is not essential for Legionella growth or cell infection. Thus, Tsp may have functional redundancy in Legionella.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Over the past 10 years, the use of saliva as a diagnostic fluid has gained attention and has become a translational research success story. Some of the current nanotechnologies have been demonstrated to have the analytical sensitivity required for the use of saliva as a diagnostic medium to detect and predict disease progression. However, these technologies have not yet been integrated into current clinical practice and work flow. CONTENT: As a diagnostic fluid, saliva offers advantages over serum because it can be collected noninvasively by individuals with modest training, and it offers a cost-effective approach for the screening of large populations. Gland-specific saliva can also be used for diagnosis of pathology specific to one of the major salivary glands. There is minimal risk of contracting infections during saliva collection, and saliva can be used in clinically challenging situations, such as obtaining samples from children or handicapped or anxious patients, in whom blood sampling could be a difficult act to perform. In this review we highlight the production of and secretion of saliva, the salivary proteome, transportation of biomolecules from blood capillaries to salivary glands, and the diagnostic potential of saliva for use in detection of cardiovascular disease and oral and breast cancers. We also highlight the barriers to application of saliva testing and its advancement in clinical settings. SUMMARY: Saliva has the potential to become a first-line diagnostic sample of choice owing to the advancements in detection technologies coupled with combinations of biomolecules with clinical relevance. (C) 2011 American Association for Clinical Chemistry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past 10 years, the use of saliva as a diagnostic fluid has gained attention and has become a translational research success story. Some of the current nanotechnologies have been demonstrated to have the analytical sensitivity required for the use of saliva as a diagnostic medium to detect and predict disease progression. However, these technologies have not yet been integrated into current clinical practice and work flow. As a diagnostic fluid, saliva offers advantages over serum because it can be collected noninvasively by individuals with modest training, and it offers a cost-effective approach for the screening of large populations. Gland-specific saliva can also be used for diagnosis of pathology specific to one of the major salivary glands. There is minimal risk of contracting infections during saliva collection, and saliva can be used in clinically challenging situations, such as obtaining samples from children or handicapped or anxious patients, in whom blood sampling could be a difficult act to perform. In this review we highlight the production of and secretion of saliva, the salivary proteome, transportation of biomolecules from blood capillaries to salivary glands, and the diagnostic potential of saliva for use in detection of cardiovascular disease and oral and breast cancers. We also highlight the barriers to application of saliva testing and its advancement in clinical settings. Saliva has the potential to become a first-line diagnostic sample of choice owing to the advancements in detection technologies coupled with combinations of biomolecules with clinical relevance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scientists have injected endotoxin into animals to investigate and understand various pathologies and novel therapies for several decades. Recent observations have shown that there is selective susceptibility to Escherichia coli lipopolysaccharide (LPS) endotoxin in sheep, despite having similar breed characteristics. The reason behind this difference is unknown, and has prompted studies aiming to explain the variation by proteogenomic characterisation of circulating acute phase biomarkers. It is hypothesised that genetic trait, biochemical, immunological and inflammation marker patterns contribute in defining and predicting mammalian response to LPS. This review discusses the effects of endotoxin and host responses, genetic basis of innate defences, activation of the acute phase response (APR) following experimental LPS challenge, and the current approaches employed in detecting novel biomarkers including acute phase proteins (APP) and micro-ribonucleic acids (miRNAs) in serum or plasma. miRNAs are novel targets for elucidating molecular mechanisms of disease because of their differential expression during pathological, and in healthy states. Changes in miRNA profiles during a disease challenge may be reflected in plasma. Studies show that gel-based two-dimensional electrophoresis (2-DE) coupled with either matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) or liquid chromatography-mass spectrometry (LC-MS/MS) are currently the most used methods for proteome characterisation. Further evidence suggests that proteomic investigations are preferentially shifting from 2-DE to non-gel based LC-MS/MS coupled with data extraction by sequential window acquisition of all theoretical fragment-ion spectra (SWATH) approaches that are able to identify a wider range of proteins. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and most recently proteomic methods have been used to quantify low abundance proteins such as cytokines. qRT-PCR and next generation sequencing (NGS) are used for the characterisation of miRNA. Proteogenomic approaches for detecting APP and novel miRNA profiling are essential in understanding the selective resistance to endotoxin in sheep. The results of these methods could help in understanding similar pathology in humans. It might also be helpful in the development of physiological and diagnostic screening assays for determining experimental inclusion and endpoints, and in clinical trials in future