916 resultados para drug-delivery system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kafirin, a protein extracted from sorghum grain, has been formulated into microparticles and proposed for use as a delivery system owing to the resistance of kafirin to upper gastrointestinal digestion. However, extracting kafirin from sorghum distillers dried grains with solubles (DDGS) may be more efficient, because the carbohydrate component has been removed by fermentation. This study investigated the properties and use of kafirin extracted from DDGS to formulate microparticles. Prednisolone, an anti-inflammatory drug that could benefit from a delayed and targeted delivery system to the colon, was loaded into DDGS kafirin microparticles by phase separation with sodium chloride. Scanning electron micrographs revealed that the empty and prednisolone-loaded microparticles were round in shape and varied in size. Surface binding studies indicated prednisolone was loaded within the microparticles rather than being solely bound on the surface. These findings demonstrate DDGS kafirin can be formulated into microparticles and loaded with medication. Future studies could investigate the potential applications of DDGS kafirin microparticles as an orally administered targeted drug-delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kafirin, a protein extracted from sorghum grain has been formulated into microparticles, and proposed for use as a delivery system due to the resistance of kafirin to upper gastrointestinal digestion. However, extracting kafirin from sorghum “distiller’s dried grains with solubles” (DDGS) may be more efficient as the carbohydrate component has been removed by fermentation. This study investigated the properties and use of kafirin extracted from DDGS to formulate microparticles. Prednisolone, an anti-inflammatory drug that could benefit from a delayed and targeted delivery system to the colon, was loaded into DDGS kafirin microparticles by phase separation using sodium chloride. Scanning electron micrographs revealed that the empty and prednisolone-loaded microparticles were round in shape and varied in size. Surface binding studies indicated prednisolone was loaded within the microparticles rather than being solely bound on the surface. These findings demonstrate DDGS kafirin can be formulated into microparticles and loaded with medication. Future studies could investigate the potential applications of DDGS kafirin microparticles as an orally administered targeted drug-delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kafirin, a protein extracted from sorghum grain has been formulated into microparticles, and proposed for use as a delivery system due to the resistance of kafirin to upper gastrointestinal digestion. However, extracting kafirin from sorghum distillers dried grains with solubles (DDGS) may be more efficient as the carbohydrate component has been removed by fermentation. This study investigated the properties and use of kafirin extracted from DDGS to formulate microparticles. Prednisolone, an anti-inflammatory drug that could benefit from a delayed and targeted delivery system to the colon, was loaded into DDGS kafirin microparticles by phase separation using sodium chloride. Scanning electron micrographs revealed that the empty and prednisolone-loaded microparticles were round in shape and varied in size. Surface binding studies indicated prednisolone was loaded within the microparticles rather than being solely bound on the surface. These findings demonstrate DDGS kafirin can be formulated into microparticles and loaded with medication. Future studies could investigate the potential applications of DDGS kafirin microparticles as an orally administered targeted drug-delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica nanotubes (SNTs) have been demonstrated here as a versatile host for controlled drug delivery and biosensing. The sol-gel template synthesized SNTs have a slow rate of drug release. Application of an external stimulus in the form of ultrasound to or chemical functionalization of synthesized SNT results in higher yield of drug release as well as yield of drug release varying linearly with time. In case of controlled drug delivery triggered by ultrasound, drug yield as function of time is found to be heavily dependent on the ultrasound impulse protocol. Impulses of shorter duration (similar to 0.5 min) and shorter time intervals between successive impulses resulted in higher drug yields. Confinement of hemoglobin (Hb) inside nanometer sized channels of SNT does not have any detrimental effect on the native protein structure and function. Observance of significant enhancement in direct electron transfer of Hb makes the SNTs also promising for application in biosensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 x 10(7) to 2.03 x 10(8) molecules per capsule with decrease in pH from 4.5 to 3.The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM).The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we report a novel approach for glucose-triggered anticancer drug delivery from the self-assembly of neutral poly(vinyln alcohol) (PVA) and chitosan. In the present study, we have fabricated multilayer thin film of PVA-borate and chitosan on colloidal particle (MF particle) and monitored the layer-by-layer growth using Zetapotential measurements. Formation of multilayer membrane on MF particle has been further characterized with transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Subsequently,disintegration of multilayer thin film and microcapsules was observed in presence of glucose. We investigated the disassembly of PVA-borate and chitosan self-assembly under CLSM and atomic force microscopy. These results suggest that this multilayer thin film is very efficient for encapsulation and release of DOX molecules above certain concentration of glucose (25 mM). This glucose-sensitive self-assembly is relevant for the application of anticancer therapeutic drug delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, an attempt was made to study the acute and sub-acute toxicity profile of G3-COOH Poly (propyl ether imine) PETIM] dendrimer and its use as a carrier for sustained delivery of model drug ketoprofen. Drug-dendrimer complex was prepared and characterized by FTIR, solubility and in vitro drug release study. PETIM dendrimer was found to have significantly less toxicity in A541 cells compared to Poly amido amine (PAMAM) dendrimer. Further, acute and 28 days sub-acute toxicity measurement in mice showed no mortality, hematological, biochemical or histopathological changes up to 80 mg/kg dose of PETIM dendrimer. The results of study demonstrated that G3-COOH PETIM dendrimer can be used as a safe and efficient vehicle for sustained drug delivery. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biologically triggered exploding microcapsules were synthesized by layer-by-layer assembly of biopolymers. The microcapsules showed controlled rupturing behaviour upon exposure to a pathologically relevant biomolecule, trypsin. These microcapsules offer significant potential for clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the dendrimer-drug interaction is of great importance to design and optimize the dendrimer-based drug delivery system. Using atomistic molecular dynamics (MD) simulations, we have analyzed the release pattern of four ligands (two soluble drugs, namely, salicylic acid (Sal), L-alanine (Ala), and two insoluble drugs, namely, phenylbutazone (Pbz) and primidone (Prim)), which were initially encapsulated inside the ethylenediamine (EDA) cored polyamidoamine (PAMAM) dendrimer using the docking method. We have computed the potential of mean force (PMF) variation with generation 5 (G5)-PAMAM dendrimer complexed with drug molecules using umbrella sampling. From our calculated PMF values, we observe that soluble drugs (Sal and Ala) have lower energy barriers than insoluble drugs (Pbz and Prim). The order of ease of release pattern for these drugs from G5 protonated PAMAM dendrimer was found to be Ala > Sal > Prim > Pbz. In the case of insoluble drugs (Prim and Pbz), because of larger size, we observe much nonpolar contribution, and thus, their larger energy barriers can be reasoned to van der Waals contribution. From the hydrogen bonding analysis of the four PAMAM drug complexes under study, we found intermolecular hydrogen bonding to show less significant contribution to the free energy barrier. Another interesting feature appears while calculating the PMF profile of G5NP (nonprotonated)-PAMAM Pbz and G5NP (nonprotonated)-PAMAM-Sal complex. The PMF was found to be less when the drug is bound to nonprotonated dendrimer compared to the protonated dendrimer. Our results suggest that encapsulation of the drug molecule into the host PAMAM dendrimer should be carried out at higher pH values (near pH 10). When such complex enters the human body, the pH is around 7.4 and at that physiological pH, the dendrimer holds the drug tightly. Hence the release of drug can occur at a controlled rate into the bloodstream. Thus, our findings provide a microscopic picture of the encapsulation and controlled release of drugs in the case of dendrimer-based host-guest systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable hollow microcapsules composed of sodium carboxymethyl cellulose (CMC) and poly (allylamine hydrochloride) (PAH) were produced by layer-by-layer adsorption of polyelectrolytes onto CaCO 3 microparticles. Subsequently the core was removed by addition of chelating agents for calcium ions. Zeta potential studies showed charge reversal with deposition of successive polyelectrolyte layers, indicating that the alternate electrostatic adsorption of polyelectrolytes of opposite charge was successfully achieved. The size and surface morphology of the capsules was characterized by various microscopy techniques. The pH responsive loading behavior was elucidated by confocal laser scanning microscopy (CLSM) studies using fluorescence labeled dextran (FITC-dextran) and labeled BSA (FITC-BSA). CLSM images confirmed the open (pH ≤ 6) and closed state (pH ≥ 7) of the capsules. A model drug bovine serum albumin (BSA) was spontaneously loaded below its isoelectric point into hollow microcapsules, where BSA is positively charged. The loading of the BSA into the microcapsules was found to be dependent on the feeding concentration and pH of the medium. 65 of the loaded BSA was released over 7h of which about 34 was released in the first hour. These findings demonstrate that (CMC/PAH) 2 hollow capsules can be further exploited as a potential drug delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small quantity of energetic material coated on the inner wall of a polymer tube is proposed as a new method to generate micro-shock waves in the laboratory. These micro-shock waves have been harnessed to develop a novel method of delivering dry particle and liquid jet into the target. We have generated micro-shock waves with the help of reactive explosive compound high melting explosive (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and traces of aluminium] coated polymer tube, utilising 9 J of energy. The detonation process is initiated electrically from one end of the tube, while the micro-shock wave followed by the products of detonation escape from the open end of the polymer tube. The energy available at the open end of the polymer tube is used to accelerate tungsten micro-particles coated on the other side of the diaphragm or force a liquid jet out of a small cavity filled with the liquid. The micro-particles deposited on a thin metal diaphragm (typically 100-mu m thick) were accelerated to high velocity using micro-shock waves to penetrate the target. Tungsten particles of 0.7 mu m diameter have been successfully delivered into agarose gel targets of various strengths (0.6-1.0 %). The device has been tested by delivering micro-particles into potato tuber and Arachis hypogaea Linnaeus (ground nut) stem tissue. Along similar lines, liquid jets of diameter 200-250 mu m (methylene blue, water and oils) have been successfully delivered into agarose gel targets of various strengths. Successful vaccination against murine salmonellosis was demonstrated as a biological application of this device. The penetration depths achieved in the experimental targets are very encouraging to develop a future device for biological and biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel ultrasound-sensitive nanocapsules were designed via layer-by-layer assembly (LbL) of polyelectrolytes for remote activated release of biomolecules/drug. Nanocapsules embedded with silver nanoparticles in the walls were synthesized by alternate assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by nanoparticle synthesis and subsequent template removal thus yielding nanocapsules. The silver NPs were synthesized in situ within the capsule walls under controlled conditions. The nanocapsules were found to be well dispersed and the silver NPs were evenly distributed within the shell. FITC-dextran permeated easily into the capsules containing silver NP's due to the pores generated during the formation of NP's. When the loaded nanocapsules were sonicated, the presence of the silver NPs in the shell structure led to rupturing of the shell into smaller fragments thus releasing the FITC-dextran. Such nanocapsules have the potential to be used as drug delivery vehicles and offer the scope for further development in the areas of modern medicine, material science, and biochemistry. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel and simple route for near-infrared (NIR)-light controlled release of drugs has been demonstrated using graphene oxide (GO) composite microcapsules based on the unique optical properties of GO. Upon NIR-laser irradiation, the microcapsules were ruptured in a point-wise fashion due to local heating which in turn triggers the light-controlled release of the encapsulated anticancer drug doxorubicin (Dox) from these capsules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticles are used for a number of biomedical applications. In this work we report the synthesis of folic acid (FA) modified polyethylene glycol (PEG) functionalized hydroxyapatite (HAp) nanoparticles. The anticancer drug, paclitaxel, is attached to the folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles and the in vitro drug release is analyzed. The surface modification and functionalization is confirmed by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and UV spectroscopy. The importance of the paper is the investigation of the release behavior of paclitaxel conjugated folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. The results show an initial rapid release and then a sustained release. (C) 2012 Elsevier B.V. All rights reserved.