990 resultados para Enzyme mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used Mössbauer and electron paramagnetic resonance (EPR) spectroscopy to study a heme-N-alkylated derivative of chloroperoxidase (CPO) prepared by mechanism-based inactivation with allylbenzene and hydrogen peroxide. The freshly prepared inactivated enzyme (“green CPO”) displayed a nearly pure low-spin ferric EPR signal with g = 1.94, 2.15, 2.31. The Mössbauer spectrum of the same species recorded at 4.2 K showed magnetic hyperfine splittings, which could be simulated in terms of a spin Hamiltonian with a complete set of hyperfine parameters in the slow spin fluctuation limit. The EPR spectrum of green CPO was simulated using a three-term crystal field model including g-strain. The best-fit parameters implied a very strong octahedral field in which the three 2T2 levels of the (3d)5 configuration in green CPO were lowest in energy, followed by a quartet. In native CPO, the 6A1 states follow the 2T2 ground state doublet. The alkene-mediated inactivation of CPO is spontaneously reversible. Warming of a sample of green CPO to 22°C for increasing times before freezing revealed slow conversion of the novel EPR species to two further spin S = ½ ferric species. One of these species displayed g = 1.82, 2.25, 2.60 indistinguishable from native CPO. By subtracting spectral components due to native and green CPO, a third species with g = 1.86, 2.24, 2.50 could be generated. The EPR spectrum of this “quasi-native CPO,” which appears at intermediate times during the reactivation, was simulated using best-fit parameters similar to those used for native CPO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycobacterium tuberculosis produces three classes of mycolic acids that differ primarily in the presence and nature of oxygen-containing substituents in the distal portion of the meromycolate branch. The methoxymycolate series has a methoxy group adjacent to a methyl branch, in addition to a cyclopropane in the proximal position. Using the gene for the enzyme that introduces the distal cyclopropane (cma1) as a probe, we have cloned and sequenced a cluster of genes coding for four highly homologous methyl transferases (mma1–4). When introduced into Mycobacterium smegmatis, this gene cluster conferred the ability to synthesize methoxymycolates. By determining the structure of the mycolic acids produced following expression of each of these genes individually and in combination, we have elucidated the biosynthetic steps responsible for the production of the major series of methoxymycolates. The mma4 gene product (MMAS-4) catalyzes an unusual S-adenosyl-l-methionine-dependent transformation of the distal cis-olefin into a secondary alcohol with an adjacent methyl branch. MMAS-3 O-methylates this secondary alcohol to form the corresponding methyl ether, and MMAS-2 introduces a cis-cyclopropane in the proximal position of the methoxy series. The similarity of these reactions and the enzymes that catalyze them suggests that some of the structural diversity of mycolic acids results from different chemical fates of a common cationic intermediate, which in turn results from methyl group addition to an olefinic mycolate precursor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

tRNA pseudouridine synthase I (ΨSI) catalyzes the conversion of uridine to Ψ at positions 38, 39, and/or 40 in the anticodon loop of tRNAs. ΨSI forms a covalent adduct with 5-fluorouracil (FUra)-tRNA (tRNAPhe containing FUra in place of Ura) to form a putative analog of a steady-state intermediate in the normal reaction pathway. Previously, we proposed that a conserved aspartate of the enzyme serves as a nucleophilic catalyst in both the normal enzyme reaction and in the formation of a covalent complex with FUra-tRNA. The covalent adduct between FUra-tRNA and ΨSI was isolated and disrupted by hydrolysis and the FUra-tRNA was recovered. The target FU39 of the recovered FUra-tRNA was modified by the addition of water across the 5,6-double bond of the pyrimidine base to form 5,6-dihydro-6-hydroxy-5-fluorouridine. We deduced that the conserved aspartate of the enzyme adds to the 6-position of the target FUra to form a stable covalent adduct, which can undergo O-acyl hydrolytic cleavage to form the observed product. Assuming that an analogous covalent complex is formed in the normal reaction, we have deduced a complete mechanism for ΨS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NO2Tyr (3-Nitrotyrosine) is a modified amino acid that is formed by nitric oxide-derived species and has been implicated in the pathology of diverse human diseases. Nitration of active-site tyrosine residues is known to compromise protein structure and function. Although free NO2Tyr is produced in abundant concentrations under pathological conditions, its capacity to alter protein structure and function at the translational or posttranslational level is unknown. Here, we report that free NO2Tyr is transported into mammalian cells and selectively incorporated into the extreme carboxyl terminus of α-tubulin via a posttranslational mechanism catalyzed by the enzyme tubulin–tyrosine ligase. In contrast to the enzymatically regulated carboxyl-terminal tyrosination/detyrosination cycle of α-tubulin, incorporation of NO2Tyr shows apparent irreversibility. Nitrotyrosination of α-tubulin induces alterations in cell morphology, changes in microtubule organization, loss of epithelial-barrier function, and intracellular redistribution of the motor protein cytoplasmic dynein. These observations imply that posttranslational nitrotyrosination of α-tubulin invokes conformational changes, either directly or via allosteric interactions, in the surface-exposed carboxyl terminus of α-tubulin that compromises the function of this critical domain in regulating microtubule organization and binding of motor- and microtubule-associated proteins. Collectively, these observations illustrate a mechanism whereby free NO2Tyr can impact deleteriously on cell function under pathological conditions encompassing reactive nitrogen species production. The data also yield further insight into the role that the α-tubulin tyrosination/detyrosination cycle plays in microtubule function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian xanthine oxidoreductases, which catalyze the last two steps in the formation of urate, are synthesized as the dehydrogenase form xanthine dehydrogenase (XDH) but can be readily converted to the oxidase form xanthine oxidase (XO) by oxidation of sulfhydryl residues or by proteolysis. Here, we present the crystal structure of the dimeric (Mr, 290,000) bovine milk XDH at 2.1-Å resolution and XO at 2.5-Å resolution and describe the major changes that occur on the proteolytic transformation of XDH to the XO form. Each molecule is composed of an N-terminal 20-kDa domain containing two iron sulfur centers, a central 40-kDa flavin adenine dinucleotide domain, and a C-terminal 85-kDa molybdopterin-binding domain with the four redox centers aligned in an almost linear fashion. Cleavage of surface-exposed loops of XDH causes major structural rearrangement of another loop close to the flavin ring (Gln 423—Lys 433). This movement partially blocks access of the NAD substrate to the flavin adenine dinucleotide cofactor and changes the electrostatic environment of the active site, reflecting the switch of substrate specificity observed for the two forms of this enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The terbenzimidazoles are a class of synthetic ligands that poison the human topoisomerase I (TOP1) enzyme and promote cancer cell death. It has been proposed that drugs of this class act as TOP1 poisons by binding to the minor groove of the DNA substrate of TOP1 and altering its structure in a manner that results in enzyme-mediated DNA cleavage. To test this hypothesis, we characterize and compare the binding properties of a 5-phenylterbenzimidazole derivative (5PTB) to the d(GA4T4C)2 and d(GT4A4C)2 duplexes. The d(GA4T4C)2 duplex contains an uninterrupted 8-bp A⋅T domain, which, on the basis of x-ray crystallographic data, should induce a highly hydrated “A-tract” conformation. This duplex also exhibits anomalously slow migration in a polyacrylamide gel, a feature characteristic of a noncanonical global conformational state frequently described as “bent.” By contrast, the d(GT4A4C)2 duplex contains two 4-bp A⋅T tracts separated by a TpA dinucleotide step, which should induce a less hydrated “B-like” conformation. This duplex also migrates normally in a polyacrylamide gel, a feature further characteristic of a global, canonical B-form duplex. Our data reveal that, at 20°C, 5PTB exhibits an ≈2.3 kcal/mol greater affinity for the d(GA4T4C)2 duplex than for the d(GT4A4C)2 duplex. Significantly, we find this sequence/conformational binding specificity of 5PTB to be entropic in origin, an observation consistent with a greater degree of drug binding-induced dehydration of the more solvated d(GA4T4C)2 duplex. By contrast with the differential duplex affinity exhibited by 5PTB, netropsin and 4′,6-diamidino-2-phenylindole (DAPI), two AT-specific minor groove binding ligands that are inactive as human TOP1 poisons, bind to both duplexes with similar affinities. The electrophoretic behaviors of the ligand-free and ligand-bound duplexes are consistent with 5PTB-induced bending and/or unwinding of both duplexes, which, for the d(GA4T4C)2 duplex, is synergistic with the endogenous sequence-directed electrophoretic properties of the ligand-free duplex state. By contrast, the binding to either duplex of netropsin or DAPI induces little or no change in the electrophoretic mobilities of the duplexes. Our results demonstrate that the TOP1 poison 5PTB binds differentially to and alters the structures of the two duplexes, in contrast to netropsin and DAPI, which bind with similar affinities to the two duplexes and do not significantly alter their structures. These results are consistent with a mechanism for TOP1 poisoning in which drugs such as 5PTB differentially target conformationally distinct DNA sites and induce structural changes that promote enzyme-mediated DNA cleavage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidants generated by eosinophils during chronic inflammation may lead to mutagenesis in adjacent epithelial cells. Eosinophil peroxidase, a heme enzyme released by eosinophils, generates hypobromous acid that damages tissue in inflammatory conditions. We show that human eosinophils use eosinophil peroxidase to produce 5-bromodeoxycytidine. Flow cytometric, immunohistochemical, and mass spectrometric analyses all demonstrated that 5-bromodeoxycytidine generated by eosinophil peroxidase was taken up by cultured cells and incorporated into genomic DNA as 5-bromodeoxyuridine. Although previous studies have focused on oxidation of chromosomal DNA, our observations suggest another mechanism for oxidative damage of DNA. In this scenario, peroxidase-catalyzed halogenation of nucleotide precursors yields products that subsequently can be incorporated into DNA. Because the thymine analog 5-BrUra mispairs with guanine in DNA, generation of brominated pyrimidines by eosinophils might constitute a mechanism for cytotoxicity and mutagenesis at sites of inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of reactive oxygen species in the cell provokes, among other lesions, the formation of 8-oxo-7,8-dihydroguanine (8-oxoG) in DNA. Due to mispairing with adenine during replication, 8-oxoG is highly mutagenic. To minimise the mutagenic potential of this oxidised purine, human cells have a specific 8-oxoG DNA glycosylase/AP lyase (hOGG1) that initiates the base excision repair (BER) of 8-oxoG. We show here that in vitro this first enzyme of the BER pathway is relatively inefficient because of a high affinity for the product of the reaction it catalyses (half-life of the complex is >2 h), leading to a lack of hOGG1 turnover. However, the glycosylase activity of hOGG1 is stimulated by the major human AP endonuclease, HAP1 (APE1), the enzyme that performs the subsequent step in BER, as well as by a catalytically inactive mutant (HAP1-D210N). In the presence of HAP1, the AP sites generated by the hOGG1 DNA glycosylase can be occupied by the endonuclease, avoiding the re-association of hOGG1. Moreover, the glycosylase has a higher affinity for a non-cleaved AP site than for the cleaved DNA product generated by HAP1. This would shift the equilibrium towards the free glycosylase, making it available to initiate new catalytic cycles. In contrast, HAP1 does not affect the AP lyase activity of hOGG1. This stimulation of only the hOGG1 glycosylase reaction accentuates the uncoupling of its glycosylase and AP lyase activities. These data indicate that, in the presence of HAP1, the BER of 8-oxoG residues can be highly efficient by bypassing the AP lyase activity of hOGG1 and thus excluding a potentially rate limiting step.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Undecaprenyl diphosphate synthase (UPS) catalyzes the cis-prenyl chain elongation onto trans, trans-farnesyl diphosphate (FPP) to produce undecaprenyl diphosphate (UPP), which is indispensable for the biosynthesis of bacterial cell walls. We report here the crystal structure of UPS as the only three-dimensional structure among cis-prenyl chain elongating enzymes. The structure is classified into a protein fold family and is completely different from the so-called “isoprenoid synthase fold” that is believed to be a common structure for the enzymes relating to isoprenoid biosynthesis. Conserved amino acid residues among cis-prenyl chain elongating enzymes are located around a large hydrophobic cleft in the UPS structure. A structural P-loop motif, which frequently appears in the various kinds of phosphate binding site, is found at the entrance of this cleft. The catalytic site is determined on the basis of these structural features, from which a possible reaction mechanism is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human rhinoviruses, the most important etiologic agents of the common cold, are messenger-active single-stranded monocistronic RNA viruses that have evolved a highly complex cascade of proteolytic processing events to control viral gene expression and replication. Most maturation cleavages within the precursor polyprotein are mediated by rhinovirus 3C protease (or its immediate precursor, 3CD), a cysteine protease with a trypsin-like polypeptide fold. High-resolution crystal structures of the enzyme from three viral serotypes have been used for the design and elaboration of 3C protease inhibitors representing different structural and chemical classes. Inhibitors having α,β-unsaturated carbonyl groups combined with peptidyl-binding elements specific for 3C protease undergo a Michael reaction mediated by nucleophilic addition of the enzyme’s catalytic Cys-147, resulting in covalent-bond formation and irreversible inactivation of the viral protease. Direct inhibition of 3C proteolytic activity in virally infected cells treated with these compounds can be inferred from dose-dependent accumulations of viral precursor polyproteins as determined by SDS/PAGE analysis of radiolabeled proteins. Cocrystal-structure-assisted optimization of 3C-protease-directed Michael acceptors has yielded molecules having extremely rapid in vitro inactivation of the viral protease, potent antiviral activity against multiple rhinovirus serotypes and low cellular toxicity. Recently, one compound in this series, AG7088, has entered clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of the catalytic power of enzymes is discussed, paying attention to evolutionary constraints. It is pointed out that enzyme catalysis reflects energy contributions that cannot be determined uniquely by current experimental approaches without augmenting the analysis by computer simulation studies. The use of energy considerations and computer simulations allows one to exclude many of the popular proposals for the way enzymes work. It appears that the standard approaches used by organic chemists to catalyze reactions in solutions are not used by enzymes. This point is illustrated by considering the desolvation hypothesis and showing that it cannot account for a large increase in kcat relative to the corresponding kcage for the reference reaction in a solvent cage. The problems associated with other frequently invoked mechanisms also are outlined. Furthermore, it is pointed out that mutation studies are inconsistent with ground state destabilization mechanisms. After considering factors that were not optimized by evolution, we review computer simulation studies that reproduced the overall catalytic effect of different enzymes. These studies pointed toward electrostatic effects as the most important catalytic contributions. The nature of this electrostatic stabilization mechanism is far from being obvious because the electrostatic interaction between the reacting system and the surrounding area is similar in enzymes and in solution. However, the difference is that enzymes have a preorganized dipolar environment that does not have to pay the reorganization energy for stabilizing the relevant transition states. Apparently, the catalytic power of enzymes is stored in their folding energy in the form of the preorganized polar environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piperonylic acid (PA) is a natural molecule bearing a methylenedioxy function that closely mimics the structure of trans-cinnamic acid. The CYP73A subfamily of plant P450s catalyzes trans-cinnamic acid 4-hydroxylation, the second step of the general phenylpropanoid pathway. We show that when incubated in vitro with yeast-expressed CYP73A1, PA behaves as a potent mechanism-based and quasi-irreversible inactivator of trans-cinnamate 4-hydroxylase. Inactivation requires NADPH, is time dependent and saturable (KI = 17 μm, kinact = 0.064 min−1), and results from the formation of a stable metabolite-P450 complex absorbing at 427 nm. The formation of this complex is reversible with substrate or other strong ligands of the enzyme. In plant microsomes PA seems to selectively inactivate the CYP73A P450 subpopulation. It does not form detectable complexes with other recombinant plant P450 enzymes. In vivo PA induces a sharp decrease in 4-coumaric acid concomitant to cinnamic acid accumulation in an elicited tobacco (Nicotiana tabacum) cell suspension. It also strongly decreases the formation of scopoletin in tobacco leaves infected with tobacco mosaic virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of desacetoxyvindoline 4-hydroxylase (D4H), which catalyzes the second to the last reaction in vindoline biosynthesis in Catharanthus roseus, appears to be under complex, multilevel developmental and light regulation. Developmental studies with etiolated and light-treated seedlings suggested that although light had variable effects on the levels of d4h transcripts, those of D4H protein and enzyme activity could be increased, depending on seedling development, up to 9- and 8-fold, respectively, compared with etiolated seedlings. However, light treatment of etiolated seedlings could stop and reverse the decline of d4h transcripts at later stages of seedling development. Repeated exposure of seedlings to light was also required to maintain the full spectrum of enzyme activity observed during seedling development. Further studies showed that a photoreversible phytochrome appeared to be involved in the activation of D4H, since red-light treatment of etiolated seedlings increased the detectable levels of d4h transcripts, D4H protein, and D4H enzyme activity, whereas far-red-light treatment completely reversed this process. Additional studies also confirmed that different major isoforms of D4H protein exist in etiolated (isoelectric point, 4.7) and light-grown (isoelectric point, 4.6) seedlings, suggesting that a component of the light-mediated activation of D4H may involve an undetermined posttranslational modification. The biological reasons for this complex control of vindoline biosynthesis may be related to the need to produce structures that could sequester away from cellular activities the cytotoxic vinblastine and vincristine dimers that are derived partially from vindoline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possible involvement of potato (Solanum tuberosum L.) starch-branching enzyme I (PSBE-I) in the in vivo synthesis of phosphorylated amylopectin was investigated in in vitro experiments with isolated PSBE-I using 33P-labeled phosphorylated and 3H end-labeled nonphosphorylated α(1→4)glucans as the substrates. From these radiolabeled substrates PSBE-I was shown to catalyze the formation of dual-labeled (3H/33P) phosphorylated branched polysaccharides with an average degree of polymerization of 80 to 85. The relatively high molecular mass indicated that the product was the result of multiple chain-transfer reactions. The presence of α(1→6) branch points was documented by isoamylase treatment and anion-exchange chromatography. Although the initial steps of the in vivo mechanism responsible for phosphorylation of potato starch remains elusive, the present study demonstrates that the enzyme machinery available in potato has the ability to incorporate phosphorylated α(1→4)glucans into neutral polysaccharides in an interchain catalytic reaction. Potato mini tubers synthesized phosphorylated starch from exogenously supplied 33PO43− and [U-14C]Glc at rates 4 times higher than those previously obtained using tubers from fully grown potato plants. This system was more reproducible compared with soil-grown tubers and was therefore used for preparation of 33P-labeled phosphorylated α(1→4)glucan chains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The four major oligomeric reaction products from saponified modified hairy regions (MHR-S) from apple, produced by recombinant rhamnogalacturonan (RG) α-l-rhamnopyranosyl-(1,4)-α-d-galactopyranosyluronide lyase (rRG-lyase) from Aspergillus aculeatus, were isolated and characterized by 1H-nuclear magnetic resonance spectroscopy. They contain an alternating RG backbone with a degree of polymerization of 4, 6, 8, and 10 and with an α-Δ-(4,5)-unsaturated d-galactopyranosyluronic acid at the nonreducing end and an l-rhamnopyranose at the reducing end. l-Rhamnopyranose units are substituted at C-4 with β-galactose. The maximum reaction rate of rRG-lyase toward MHR-S at pH 6.0 and 31°C was 28 units mg−1. rRG-lyase and RG-hydrolase cleave the same alternating RG I subunit in MHR. Both of these enzymes fragment MHR by a multiple attack mechanism. The catalytic efficiency of rRG-lyase for MHR increases with decreasing degree of acetylation. Removal of arabinose side chains improves the action of rRG-lyase toward MHR-S. In contrast, removal of galactose side chains decreased the catalytic efficiency of rRG-lyase. Native RG-lyase was purified from A. aculeatus, characterized, and found to be similar to the rRG-lyase expressed in Aspergillus oryzae.