994 resultados para 730106 Cardiovascular system and diseases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The vasoconstricting peptide Endothelin-1 (ET-1) has been associated with atherosclerotic cardiovascular disease, AAA, hypertension and hypercholesterolemia. It is known to stimulate quiescent vascular smooth muscle cells (VSMC) into the growth cycle and has been linked to intimal thickening following endothelial injury and is associated with vessel wall remodelling in salt-sensitive hypertension models. Enhanced ET-1 expression has been reported in the internal mammary artery (IMA) and was markedly higher in patients undergoing cardiac bypass surgery who were diabetic and /or hypercholesterolemic. Aims: To firstly review the histopathology of the IMA and secondly, determine the relationship between ET-1 expression in this vessel and mitogenic activity in the medial VSMC. Methods: Vessel tissue collected at the time of CABG surgery was formalin-fixed and paraffin-embedded for histological investigation. Cross sections of the left distal IMAwere stained with Alcian Blue/Verhoeff’s van Gieson to assess medial degeneration and identify the elastic lamellae and picrosirius red to determine the collagen content (specifically type I and type III). Immunohistochemistry staining was used to assess VSMC growth (PCNA label), tissue ET-1 expression, VSMC (SMCa-actin) area and macrophage/monocyte (anti-CD68) infiltration. Quantitative analysis was performed to measure the VSMC area in relation to ET-1 staining. Results: Fifty-five IMA specimens from the CABG patients (10F; 45M; mean age 65 years) were collected for this study. Fourteen donor IMAspecimens were used as controls (7F; 7M; mean age 45 years). Significant medial hypertrophy, VSMC disorganisation and elastic lamellae destruction was detected in the CABG IMA. The amount of Alcian blue staining in the CABG IMA was almost double that of the control (31.85+/14.52% Vs 17.10+/9.96%, P= .0006). Total collagen and type I collagen content was significantly increased compared with controls (65.8+/18.3% Vs 33.7 + / 13.7%, P= .07), (14.2 + /10.0% Vs 4.8 + /2.8%, P= .01), respectively. Tissue ET-1 and PCNA labelling were also significantly elevated the CABG IMA specimens relative to the controls (69.99 + /18.74%Vs 23.33 + /20.53%, P= .0001, and 37.29 + /12.88% Vs 11.06 + /8.18, P= .0001), respectively. There was mild presence of macrophages and monocytes in both CABG and control tissue. Conclusions: The IMA from CABG patients has elevated levels of type I collagen in the extracellular matrix indicative of fibrosis and was coupled with deleterious structural remodelling. Abnormally high levels of ET-1 were measured in the medial SMC layer and was associated with VSMC growth but not related to any chronic inflammatory response within the vessel wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Tissue Doppler strain rate imaging (SRI) have been validated and applied in various clinical settings, but the clinical use of this modality is still limited due to time-consuming postprocessing, unfavorable signal to noise ratio and major angle dependency of image acquisition. 2D Strain (2DS) measures strain parameters through automated tissue tracking (Lagrangian strain) rather than tissue velocity regression. We sought to compare the accuracy of this technique with SRI and evaluate whether it overcomes the above limitations. Methods: We assessed 26 patients (13 female, age 60±5yrs) at low risk of CAD and with normal DSE at both baseline and peak stress. End systolic strain (ESS), peak systolic strain rate (SR), and timing parameters were measured by two independent observers using SRI and 2D Strain. Myocardial segments were excluded from the analyses if the insonation angle exceeded 30 degrees or if the segments were not visualized; 417 segments were evaluated. Results: Normal ranges for TVI and CEB approaches were comparable for SR (-0.99 ± 0.39 vs -0.88 ± 0.36, p=NS), ESS (-15.1 ± 6.5 vs -14.9 ± 6.3, p=NS), time to end of systole (174 ± 47 vs 174 ± 53, p=NS) and time to peak SR (TTP; 340 ± 34 vs 375 ± 57). The best correlations between the techniques were for time to end systole (rest r=0.6, p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Stress myocardial contrast echo (MCE) is technically challenging with exercise (Ex) because of cardiacmovementandshort duration ofhyperemia.Vasodilators solve these limitations, but are less potent for inducing abnormal wall motion (WM). We sought whether a combined dipyridamole (DI; 0.56 mg/kg i.v. 4 min) and Ex stress protocol would enable MCE to provide incremental benefit toWManalysis for detection of CAD. Methods. Standard echo images were followed by real time MCE at rest and following stress in 85 pts, 70 undergoing quantitative coronary angiography and 15 low risk pts.WMAfrom standard and LVopacification images, and then myocardial perfusion were assessed sequentially in a blinded fashion. A subgroup of 13 pts also underwent Ex alone, to assess the contribution of DI to quantitative myocardial flow reserve (MFR). Results. Significant (>50%) stenoses were present in 43 pts, involving 69 territories. Addition of MCE improved SE sensitivity for detection of CAD (91% versus 74%, P = 0.02) and better appreciation of disease extent (87% versus 65%territories, P=0.003), with a non-significant reduction in specificity. In 55 territories subtended by a significant stenosis, but with no resting WM abnormality, ability to identify ischemia was also significantly increased by MCE (82% versus 60%, P = 0.002). MFR was less with Ex alone than with DIEx stress (2.4 ± 1.6 versus 4.0 ± 1.9, P = 0.05), suggesting prolongation of hyperaemia with DI may be essential to the results. Conclusions. Dipyridamole-exercise MCE adds significant incremental benefit to standard SE, with improved diagnostic sensitivity and more accurate estimation of extent of CAD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Mitral repair is increasingly performed in asymptomatic mitral regurgitation (MR). Previous work showed that pre-operative documentation of loss of contractile reserve (Cr) by exercise echo (ExE) may predict LV dysfunction early after repair. We sought the value of Cr in predicting late post-op LV dysfunction and clinical outcome. Methods: Pre-op ExE was performed in 41 pts with isolated MR without coronary disease undergoing repair. LV end-systolic and end-diastolic volumes were measured at rest and post-stress and EF was calculated using modified Simpson’s rule. Intact Cr was defined by >4% increment of stress compared with rest EF. During follow up (3±1 years), EF was serially assessed and occurrence of cardiac events was documented. Results: Cr was present in 19 pts (Cr+)(peak EF 76±7%) and absent in 22 pts (Cr-)(peak EF 56±11%, p