2 resultados para Naturally occurring

em Instituto Politécnico de Bragança


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Naturally-occurring phytochemicals have received a pivotal attention in the last years, due to the increasing evidences of biological activities. Equisetum giganteum L., commonly known as “giant horsetail”, is a native plant from Central and South America, being largely used in dietary supplements as diuretic, hemostatic, antiinflammatory and anti-rheumatic agents [1,2]. The aim of the present study was to evaluate the antioxidant (scavenging effects on 2,2-diphenyl-1-picrylhydrazyl radicals- RSA, reducing power- RP, β-carotene bleaching inhibition- CBI and lipid peroxidation inhibition- LPI), anti-inflammatory (inhibition of NO production in lipopolysaccharidestimulated RAW 264.7 macrophages) and cytotoxic (in a panel of four human tumor cell lines: MCF-7- breast adenocarcinoma, NCI-H460- non-small cell lung cancer, HeLa- cervical carcinoma and HepG2- hepatocellular carcinoma; and in non-tumor porcine liver primary cells- PLP2) properties of E. giganteum, providing a phytochemical characterization of its extract (ethanol/water, 80:20, v/v), by using highperformance liquid chromatography coupled to diode array detection and electrospray ionisation mass spectrometry (HPLC-DAD–ESI/MS). E. giganteum presented fourteen phenolic compounds, two phenolic acids and twelve flavonol glycoside derivatives, mainly kaempferol derivatives, accounting to 81% of the total phenolic content, being kaempferol-O-glucoside-O-rutinoside, the most abundant molecule (7.6 mg/g extract). The extract exhibited antioxidant (EC50 values = 123, 136, 202 and 57.4 μg/mL for RSA, RP, CBI and LPI, respectively), anti-inflammatory (EC50 value = 239 μg/mL) and cytotoxic (GI50 values = 250, 258, 268 and 239 μg/mL for MCF-7, NCI-H460, HeLa and HepG2, respectively) properties, which were positively correlated with its concentration in phenolic compounds. Furthermore, up to 400 μg/mL, it did not revealed toxicity in non-tumor liver cells. Thus, this study highlights the potential of E. giganteum extracts as rich sources of phenolic compounds that can be used in the food, pharmaceutical and cosmetic fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years the interest in naturally occurring compounds has been increasing worldwide. Indeed, many of the bioactive compounds currently used as medicines have been synthesized based on the structure of natural compounds [1]. In order to obtain bioactive fractions and subsequently isolated compounds derived from natural matrices, several procedures have been carried out. One of these is to separate and assess the concentration of the active compound(s) present in the samples, a step in which the chromatographic techniques stand out [2]. In the present work the mushroom Sui/Ius granulatus (L.) Roussel was chemically characterized by chromatographic techniques coupled to different detectors, in order to evaluate the presence of nutritional and/or bioactive molecules. Some hydrophilic compounds, namely free sugars, were identified by high performance liquid chromatography coupled to a refraction index detector (HPLC-RI), and organic and phenolic acids were assessed by HPLC coupled to a photodiode array detector (HPLC-PDA). Regarding lipophilic compounds, fatty acids weredetermined by gas chromatography with a flame ionization detector (GC-FID) and tocopherols by HPLC-fluorescence detection. Mannitol and trehalose were the main free sugars detected. Different organic acids were also identified (i.e. oxalic, quinic and fumaric acids), as well as phenolic acids (i.e. gallic and p-hydroxybenzoic acids) and the related compound cinnamic acid. Mono- and polyunsaturated fatty acids were the prevailing fatty acids and a-, ~- and ~-tocopherol were the isoforms of vitamin E detected in the samples. Since this species proved to be a source of biologically active compounds, the antioxidant and antimicrobial properties were evaluated. The antioxidant activity was measured through the reducing power, free radical's scavenging activity and lipid peroxidation inhibition of its methanolic extract, and the antimicrobial activity was also tested in Gram positive and Gram negative bacteria and iri different fungi. S. granulatus presented antioxidant properties in all the performed assays, and proved to inhibit the growth of different bacterial and fungal strains. This study is a first step for classifying S. granulatus as a functional food, highlighting the potential of mushrooms as a source of nutraceutical and biologically active compounds.