3 resultados para MYCOTOXINS

em Instituto Politécnico de Bragança


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants frequently suffer contaminations by toxigenic fungi, and their mycotoxins can be produced throughout growth, harvest, drying and storage periods. The objective of this work was to validate a method for detection of toxins in medicinal and aromatic plants, through a fast and highly sensitive method, optimizing the joint co-extraction of aflatoxins (AF: AFB1, AFB2, AFG1 and AFG2) and ochratoxin A (OTA) by using Aloysia citrodora P. (lemon verbena) as a case study. For optimization purposes, samples were spiked (n=3) with standard solutions of a mix of the four AFs and OTA at 10 ng/g for AFB1, AFG1 and OTA, and at 6 ng/g of AFB2 and AFG2. Several extraction procedures were tested: i) ultrasound-assisted extraction in sodium chloride and methanol/water (80:20, v/v) [(OTA+AFs)1]; ii) maceration in methanol/1% NaHCO3 (70:30, v/v) [(OTA+AFs)2]; iii) maceration in methanol/1% NaHCO3 (70:30, v/v) (OTA1); and iv) maceration in sodium chloride and methanol/water (80:20, v/v) (AF1). AF and OTA were purified using the mycotoxin-specific immunoaffinity columns AflaTest WB and OchraTest WB (VICAM), respectively. Separation was performed with a Merck Chromolith Performance C18 column (100 x 4.6 mm) by reverse-phase HPLC coupled to a fluorescence detector (FLD) and a photochemical derivatization system (for AF). The recoveries obtained from the spiked samples showed that the single-extraction methods (OTA1 and AF1) performed better than co-extraction methods. For in-house validation of the selected methods OTA1 and AF1, recovery and precision were determined (n=6). The recovery of OTA for method OTA1 was 81%, and intermediate precision (RSDint) was 1.1%. The recoveries of AFB1, AFB2, AFG1 and AFG2 ranged from 64% to 110% for method AF1, with RSDint lower than 5%. Methods OTA1 and AF1 showed precision and recoveries within the legislated values and were found to be suitable for the extraction of OTA and AF for the matrix under study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Processed meat products are of worldwide importance and, because of their intrinsic factors as well as the processing methods, they are highly prone to fungal and mycotoxin contamination. Ochratoxin A (OTA) is the most significant mycotoxin in processed meat products. Penicillium nordicum is considered to be responsible for OTA contamination of meat products, as it is highly adapted to salt and protein-rich matrices and is moderately psycrotrophic. However, another OTA-producing fungus, Aspergillus westerdijkiae, adapted to carbon-rich matrices such as cereals and coffee beans, has been recently associated with high levels of OTA in meat products. Several Lactic Acid Bacteria (LAB) and yeasts have been tested as biocontrol agents against P. nordicum growth and OTA production in meat products, with promising results, but none of the studies have considered A. westerdijkiae. The aim of this work was to evaluate in vitro the effect of a commercial starter culture used in sausage fermentation and four yeasts isolated from dry-cured sausage on these two OTA-producing fungi, both in terms of fungal growth and of OTA production, using different meat-based culture media as model systems. The mechanisms underlying the observed effect were also studied. For this purpose, C. krusei, C. zeylanoides, R. mucilaginosa, R. glutinis, a mix of these yeasts and the starter culture were co-inoculated with P. nordicum and A. westerdijkiae in industrial sausage, traditional sausage, and ham-based media, under conditions of water activity, salt concentration and temperature that mimic real conditions at beginning and end of sausage curing process. Fungal growth was determined by measuring colony diameter, and OTA production was quantified by HPLC-FLD after extraction with methanol. Yeasts where found to inhibit significantly the growth of both fungi. P. nordicum was unable to produce detectable OTA in both sausage-based media under any condition. In ham, yeasts reduced OTA production, while the starter culture significantly increased it. Unexpectedly, OTA production by A. westerdijkiae was significantly stimulated in all media tested by all microorganisms. Matrix has a significant effect on OTA production by P. nordicum, but not by A. westerdijkiae, for which only temperature showed to have effect. By testing the mechanisms of action by which starter culture and C. zeylanoides influenced fungal responses, we were able to determine that direct contact and simultaneous growth of test organisms were the mechanisms more significantly involved in the responses. In conclusion, ochratoxigenic fungi do not all respond to antagonistic microorganisms in the same way. The use of biocontrol agents with the intent of reducing fungal growth and mycotoxin production by one fungus can have unexpected effects on others, thus leading to unforeseen safety problems. Further experiments are recommended to properly understand the reasons behind the different effects of microorganisms, to ensure their safe as biocontrol agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interest and demand for aromatic and medicinal plants have been growing due to their combined organoleptic and bioactive properties. However, in general these plants suffer natural contamination by fungi and associated toxins during growth as also in harvesting, storage and drying processes, which represents a threat to public health. The rigorous standards required by the industrial sector in terms of good quality of raw materials demand efficient decontamination procedures (1-3). Gamma radiation is assumed as an accredited methodology for the decontamination of medicinal and aromatic plants, with numerous advantages not only to the product itself but also to the consumer and the environment (4). In this study, efficient methods for detecting aflatoxins (AFB" AFB2, AFG1 and AFG2) and ocratoxin A (OTA), were optimized and validated, and afterwards, applied to spiked samples of Aloysia citrodora Pahiu submitted to gamma radiation treatment at different doses (I , 5 and I 0 kGy ), to evaluate the effectiveness of irradiation as a decontamination technique for dry plants. Mycotoxin levels were determined by reversed-phase high-performance liquid chromatography (HPLC) with fluorescence detection, after immunoaffinity column (lAC) cleanup. All the applied gamma radiation doses conducted to a degradation of the studied mycotoxins. In relation to the control sample (0 kGy), the reduction rates in the irradiated samples ranged from 4.9 and 5.2% in OTA, 5.3 and 9.6% in AFBt. 12.3 and 13.5 in AFB2, 16.4 and 23.6 in AFG1 and, finally, 52.6 and 62.7% in AFG2. The gamma radiation dose of 5 kGy stood out as the best decontamination dose for AFB1 and AFG1, which are the most significant aflatoxins naturally found in food commodities. For OTA, AFG2 and AFB2 there was no significant difference in decontamination between doses. In conclusion, the extraction and analysis methods proved to be suitable for detection of aflatoxins and ocratoxin A in A. citrodora. Gamma radiation seems to be an effective technique for reducing aflatoxins G in A. citrodora, and eventually oth~r medicinal and aromatic plants. On the other hand, aflatoxins B and OTA are less affected by this treatment.