6 resultados para Food industry

em Instituto Politécnico de Bragança


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A extrusão de alimentos envolve transformações moleculares complexas que permitem grande diversidade nos produtos extrudidos existentes e nas suas propriedades físicas, químicas, sensoriais e nutricionais. Neste artigo são apresentadas aplicações atuais da extrusão na indústria alimentar, assim como as características dos produtos extrudidos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Angiogenesis is a biological process through which there is the formation of new blood vessels from preexisting ones [I]. However, in pathological cases, the abnormal growth of new blood vessels promotes the development of various diseases including cancer [2) through the production of atypically large amounts of angiogenesis factors, e.g. the vascular endothelial growth factor (VEGF) [3]. The plant secondary metabolites have been the subject of several studies to evaluate their benefits to human health. In particular, the phenolic compounds have high potential for use in the food industry, including the development of functional foods. Among these, apigenin has been associated with chemopreventive effects related to cancer [4]. In fact, chemoprevention is a present-day concept and contemplates the use of medicines, biological compounds or nutrients as an intervention strategy of cancer prevention. In this work, an Arenaria montana L hydroethanolic extract was prepared and after characterization by HPLC-DAD-ESI/MS showed to be rich in apigenin derivatives. Furthermore, it exhibited ability to inhibit the phosphorylation of VEGFR-2 (vascular endothelium growth factor receptor) through an enzymatic assay. However, for the major protection of bioactive compounds, the extract was microencapsulated by an atomization/coagulation technique with alginate as the matrix material. Posteriorly, the hydroethanolic extract, in free and microencapsulated forms, was incorporated in yogurts in order to develop a novel chemopreventer food in relation to the angiogenesis process. The functionalized yogurts with A. montana extracts (free and microencapsulated) showed a nutritional value similar to the used control (yogurt without extract); however, the samples enriched with extracts revealed added-value regarding the VEGFR-2 phosphorylation inhibition ability. This effect was more effectively preserved over time in the samples functionalized with the protected extract. Overall, this work contributes to the valorization of plants rich in flavonoids, exploring its antiangiogenic potential with VEGFR-2 as target. Moreover, the atomization/coagulation technique allowed the production of viable microspheres enriched with the plant extract. The microspheres were effectively incorporated into yogurts, protecting the extract thus envisaging the development of novel functional foods with chemopreventive effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Betalains are plant derived natural pigments that are presently gaining popularity for use as natural colorants in food industry. Although being betalains from red beetroot already used as food colorant (E- 162), these compounds are not as well studied as compared to other natural pigments such as anthocyanins, carotenoids or chlorophylls (I]. Since food additives are on the focus of public interest, it is becoming increasingly important to meet consumers' expectations for natural and healthy products. Hence, the search for new plant-derived colorants for the food industry is still necessary [2]. Betalains were originally called 'nitrogenous anthocyanins', which incorrectly implied structural similarities between the two pigment classes. There are two structurally different types of betalains: the yellow/orange betaxanthins which are the condensation products of betalamic acid and assorted amino compounds, and the red betacyanins which are formed by glycosylation and acylation of cyclo-DOPA [3]. Looking at the chemical structure of the pigment, the addition of an acid to the extraction solvent will increase the affinity of the pigment with the solvent. The aim of this study was to use Gomphrena globosa L. flowers, as an alternative plant source to obtain these pigments and to evaluate the best acid to be used within the extraction procedure. For that purpose three different acids (acetic, hydrochloric and phosphoric acids, all ofthem allowed by the food industry), adjusted at the same pH, were tested during a maceration extraction procedure. After the extraction a purification through C18 column was performed in order to obtain a more concentrate extract in betacyanins. The results were analysed by HPLC-PDA-MSIESI. The betacyanin profile allowed the identification of gomphrenin IIJIII and isogomphrenin IIIIII and the best results were achieved by performing the extraction procedure using hydrochloric acid (6.6 mg/g extract), while phosphoric acid only presented trace amounts of these compounds. When acetic acid was used, the pigment extracted was 6.8 times less (0.97 mg/g extract) when compared to HCI. In conclusion hydrochloric acid can be considered the most suitable acid to be applied in the extraction procedure of these pigments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Betacyanins are betalain pigments that display a red-violet colour which have been reported to be three times stronger than the red-violet dye produced by anthocyanins [1]. The applications of betacyanins cover a wide range of matrices, mainly as additives or ingredients in the food industry, cosmetics, pharmaceuticals and livestock feed. Although, being less commonly used than anthocyanins and carotenoids, betacyanins are stable between pH 3 to 7 and suitable for colouring in low acid matrices. In addition, betacyanins have been reported to display interesting medicinal character as powerful antioxidant and chemopreventive compounds either in vitro or in vivo models [2]. Betacyanins are obtained mainly from the red beet of Beta vulgaris plant (between I 0 to 20 mg per I 00 g pulp) but alternative primary sources are needed [3]. In addition, independently of the source used, the effect of the variables that affect the extraction of betacyanins have not been properly described and quantified. Therefore, the aim of this study was to identifY and optimize the conditions that maximize betacyanins extraction using the tepals of Gomphrena globosa L. flowers as an alternative source. Assisted by the statistical technique of response surface methodology, an experimental design was developed for testing the significant explanatory variables of the extraction (time, temperature, solid-liquid ratio and ethanolwater ratio). The identification was performed using high-performance liquid chromatography coupled with a photodiode array detector and mass spectrometry with electron spray ionization (HPLC-PDAMS/ ESI) and the response was measured by the quantification of these compounds using HPLC-PDA. Afterwards, a response surface analysis was performed to evaluate the results. The major betacyanin compounds identified were gomphrenin 11 and Ill and isogomphrenin IJ and Ill. The highest total betacyanins content was obtained by using the following conditions: 45 min of extraction. time, 35•c, 35 g/L of solid-liquid ratio and 25% of ethanol. These values would not be found without optimizing the conditions of the betacyanins extraction, which moreover showed contrary trends to what it has been described in the scientific bibliography. More specifically, concerning the time and temperature variables, an increase of both values (from the common ones used in the bibliography) showed a considerable improvement on the betacyanins extraction yield without displaying any type of degradation patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Buckler sorrel (Rumex induratus Boiss. & Reut.) is an underutilized leafy vegetable with peculiar sensory properties and potential as a gourmet food. In the food industry, different packaging methods have been used for shelf-life extension, but it is important to know how the quality of minimally processed vegetable is affected by these treatments. Recently, nitrogen and argon have been used for food packaging. Nitrogen is low soluble in water and other food constituents and does not support the growth of aerobic microbes. In turn, argon is biochemically active and appears to interfere with enzymatic oxygen receptor sites. In this study, modified atmospheres enriched with nitrogen and argon were evaluated for shelf-life extension of buckler sorrel leaves. Wild samples were gathered in Bragança, Portugal, considering local consumers’ sites and criteria. Healthy and undamaged leaves were selected, rinsed in tap water, and a portion was immediately analyzed (non-stored control). The remaining fresh material was packaged in polyethylene bags under nitrogen- and argon-enriched atmospheres and a conventional control atmosphere (air). All packaged samples were stored at 4 ºC for 12 days and then analyzed. The headspace gas composition was monitored during storage. Different quality attributes were evaluated, including visual (colour), nutritional (macronutrients, individual sugars and fatty acids) and bioactive (hydrophilic and lipophilic molecules and antioxidant properties) parameters. Different statistical tools were used; the one-way analysis of variance (ANO VA) was applied for analyse the differences among treatments and a linear discriminant analysis (LDA ) was used to evaluate the effects on the overall postharvest quality. The argon-enriched atmosphere better prevent the samples yellowing. The proximate composition did not change significantly during storage. Samples in control atmosphere revealed higher protein and ash contents and lower levels of lipids. The non-stored control samples presented the higher amounts of fructose, glucose and trehalose. The storage time increased the palmitic acid levels and decreased the content in α-linolenic and linoleic acids. The γ- e δ-tocopherols were higher after the 12 days of cold storage. Probably, the synthesis of these lipophilic compounds was a plant strategy to fight against the abiotic stress induced by storage. Higher levels of total phenolics and flavonoids and increased reducing power and β-carotene bleaching inhibition capacity were also found in the stored control samples. Once again, this result may be attributed to the intrinsic plant-protection mechanisms. Overall, the argon atmosphere was more suitable for quality preservation and shelf-life extension of buckler sorrel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Food industry is focused on the development of novel functional foods containing health promoting natural ingredients. Natural antioxidants present important health benefits like the prevention of several diseases related to oxidative stress [1,2]. Foeniculum vulgare Mill. (fennel) is a source of those compounds with proved antioxidant potential [3]. Herein, after evaluation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and reducing power of fennel (provided by Américo Duarte Paixão Lda.) decoction, we propose its incorporation into cottage cheese (produced by Queijos Casa Matias Lda.). Three groups of cottage cheese samples were prepared: control; samples with fennel decoction (incorporated at EC25 value=0.35 mg/mL, previously determined by DPPH assay); and samples with fennel powder (incorporated at 1.75 mg/mL, considering the decoction yield=20%). The samples were submitted to an evaluation of DPPH scavenging activity and reducing power immediately after the incorporations, and after 7 and 14 days of storage, at 4 ºC. The incorporation of fennel improved the antioxidant activity of cottage cheese. Samples incorporated with plant powder revealed higher antioxidant properties than samples incorporated with decoction, either in 0 or 7 days of storage. After 14 days, cottage cheese incorporated with fennel decoction gave the highest DPPH scavenging activity (46.72±0.09 mg/mL). A decrease in the antioxidant potential of the cottage cheese with fennel was observed along the shelf life. Nevertheless, it is important to highlight that the samples still display antioxidant properties. Studies regarding the effects of the incorporation of these natural ingredients on nutritional and chemical composition of cottage cheese are in course