3 resultados para based assay
em Bioline International
Resumo:
Purpose: To evaluate the cytotoxic, anti-inflammatory and antioxidant activities of four different solvent extracts obtained from the aerial parts of Galega officinalis L Methods: The hexane, DCM, methanol and water extracts of G. officinalis were successively obtained by soxhlet extraction method. The cytotoxic activity of the extracts was assessed against human lung carcinoma (A-549), human colorectal adenocarcinoma (HT-29), human brain glioblastoma (U-87), and colon adenocarcinoma (DLD-1) by Resazurine test. The antioxidant activity of extracts were determined by Folin-Ciocalteau, oxygen radical absorbing capacity (ORAC), and 2’.7’-dichlorofluorescin-diacetate (DCFH-DA) cell-based assay while their anti-inflammatory activity was determined by nitric oxide (NO) assay. Results: DCM extract showed strong cytotoxic activity against lung adenocarcinoma and brain glioblastoma cell lines, with IC50 (concentration inhibiting 50 % of cell growth) values of 11 ± 0.4 and 16 ± 3 μg/mL, respectively. The hexane extract showed moderate anticancer activity against the same cell lines (59 ± 13 and 63 ± 16 μg/mL, respectively). DCM extract also showed significant anti-inflammatory activity, inhibiting NO release by 86.7 % at 40 μg/mL in lipopolysaccharide (LPS) - stimulated murine RAW 264.7 macrophages. Of all test extracts, the methanol extract of G. officinalis showed the highest antioxidant activity with 2.33 ± 0.09 μmol Trolox/mg , 7.10 ± 0.9 g tannic acid equivalent (TAE), and IC50 of 44 ± 4 μg/mL. Conclusion: The findings of this study suggest that DCM extract may possess anticancer effect against lung adenocarcinoma and brain glioblastoma, as well as serve as an anti-inflammatory agent.
Resumo:
Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in the rpoB, katG, inhA, ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 for rpoB, katG, inhA, ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.
Resumo:
Purpose: To develop a novel chitosan/gelatin-hydroxyapatite (CGHaP) microspheres for evaluating the biological response of pre-osteoblast cells. Methods: The microsphere was prepared by water-in-oil emulsion method. Cell proliferation was studied using AlamarBlue colorimetric assay and DAPI staining while alkaline phosphatase assay was carried out by colorimetric assay method. Chitosan microspheres as well as chitosan-hydroxyapatite microspheres was prepared and tested for biological response from MC3T3-E1 cell line. Results: The results showed that CGHaP promotes MC3T3-E1 cell proliferation and spread on the surface of microspheres. The cells were clustered with more actin filaments and well-linked with neighbouring cells or adjacent cells when cultured in CGHaP microspheres whereas fewer cells were spread on chitosan (CH) microspheres. CGHaP microspheres significantly (p < 0.05) promoted cell attachment, proliferation and extracellular matrix mineralization. CGHaP microspheres presented significantly (p < 0.02) higher calcium deposition (0.5 ng) than CH microspheres (0.28 ng). Specifically, CGHaP microspheres exhibited high ALP activity (8 units; 2-fold) compared to CH with 3 units, after 7 days of incubation. The results suggest that CGHaP possesses a great ability to facilitate bone ingrowth formation and possibility of good osteointegration in vivo. Conclusion: The nanomaterial enhances the proliferation of pre-osteoblast cells in tissue engineering microspheres. The outcome of this study may have a major impact on the development of novel nanomaterials for bone tissue engineering.