4 resultados para High performance liquid chromatography (HPLC)
em Bioline International
Resumo:
Purpose: To investigate the spectrum-effect relationships between high performance liquid chromatography (HPLC) fingerprints and duodenum contractility of charred areca nut (CAN) on rats. Methods: An HPLC method was used to establish the fingerprint of charred areca nut (CAN). The promoting effect on contractility of intestinal smooth was carried out to evaluate the duodenum contractility of CAN in vitro. In addition, the spectrum-effect relationships between HPLC fingerprints and bioactivities of CAN were investigated using multiple linear regression analysis (backward method). Results: Fourteen common peaks were detected and peak 3 (5-Hydroxymethyl-2-furfural, 5-HMF) was selected as the reference peak to calculate the relative retention time of 13 other common peaks. In addition, the equation of spectrum-effect relationships {Y = 3.818 - 1.126X1 + 0.817X2 - 0.045X4 - 0.504X5 + 0.728X6 - 0.056X8 + 1.122X9 - 0.247X13 - 0.978X14 (p < 0.05, R2 = 1)} was established in the present study by the multiple linear regression analysis (backward method). According to the equation, the absolute value of the coefficient before X1, X2, X4, X5, X6, X8, X9, X13, X14 was the coefficient between the component and the parameter. Conclusion: The model presented in this study successfully unraveled the spectrum-effect relationship of CAN, which provides a promising strategy for screening effective constituents of areca nut.
Resumo:
Purpose: To develop an effective method for evaluating the quality of Cortex berberidis from different geographical origins. Methods: A simple, precise and accurate high performance liquid chromatography (HPLC) method was first developed for simultaneous quantification of four active alkaloids (magnoflorine, jatrorrhizine, palmatine, and berberine) in Cortex berberidis obtained from Qinghai, Tibet and Sichuan Provinces of China. Method validation was performed in terms of precision, repeatability, stability, accuracy, and linearity. Besides, partial least squares discriminant analysis (PLS-DA) and one-way analysis of variance (ANOVA) were applied to study the quality variations of Cortex berberidis from various geographical origins. Results: The proposed HPLC method showed good linearity, precision, repeatability, and accuracy. The four alkaloids were detected in all samples of Cortex berberidis. Among them, magnoflorine (36.46 - 87.30 mg/g) consistently showed the highest amounts in all the samples, followed by berberine (16.00 - 37.50 mg/g). The content varied in the range of 0.66 - 4.57 mg/g for palmatine and 1.53 - 16.26 mg/g for jatrorrhizine, respectively. The total content of the four alkaloids ranged from 67.62 to 114.79 mg/g. Moreover, the results obtained by the PLS-DA and ANOVA showed that magnoflorine level and the total content of these four alkaloids in Qinghai and Tibet samples were significantly higher (p < 0.01) than those in Sichuan samples. Conclusion: Quantification of multi-ingredients by HPLC combined with statistical methods provide an effective approach for achieving origin discrimination and quality evaluation of Cortex berberidis. The quality of Cortex berberidis closely correlates to the geographical origin of the samples, with Cortex berberidis samples from Qinghai and Tibet exhibiting superior qualities to those from Sichuan.
Resumo:
Purpose: To develop a high-performance liquid chromatography (HPLC) fingerprint method for the quality control and origin discrimination of Gastrodiae rhizoma . Methods: Twelve batches of G. rhizoma collected from Sichuan, Guizhou and Shanxi provinces in china were used to establish the fingerprint. The chromatographic peak (gastrodin) was taken as the reference peak, and all sample separation was performed on a Agilent C18 (250 mm×4.6 mmx5 μm) column with a column temperature of 25 °C. The mobile phase was acetonitrile/0.8 % phosphate water solution (in a gradient elution mode) and the flow rate of 1 mL/min. The detection wavelength was 270 nm. The method was validated as per the guidelines of Chinese Pharmacopoeia. Results: The chromatograms of the samples showed 11 common peaks, of which no. 4 was identified as that of Gastrodin. Data for the samples were analyzed statistically using similarity analysis and hierarchical cluster analysis (HCA). The similarity index between reference chromatogram and samples’ chromatograms were all > 0.80. The similarity index of G. rhizoma from Guizhou, Shanxi and Sichuan is evident as follows: 0.854 - 0.885, 0.915 - 0.930 and 0.820 - 0.848, respectively. The samples could be divided into three clusters at a rescaled distance of 7.5: S1 - S4 as cluster 1; S5 - S8 cluster 2, and others grouped into cluster 3. Conclusion: The findings indicate that HPLC fingerprinting technology is appropriate for quality control and origin discrimination of G. rhizoma.
Resumo:
Purpose: To study the in vivo metabolism of kurarinone, a lavandulyl flavanone which is a major constituent of Kushen and a marker compound with many biological activities, using ultra-performance liquid chromatography coupled with linear ion trap Orbitrap mass spectrometry (UPLC-LTQ-Orbitrap- MS). Methods: Six male Sprague-Dawley rats were randomly divided into two groups. First, kurarinone was suspended in 0.5 % carboxymethylcellulose sodium (CMC-Na) aqueous solution, and was given to rats (n = 3, 2 mL for each rat) orally at 50 mg/kg. A 2 mL aliquot of 0.5 % CMC-Na aqueous solution was administered to the rats in the control group. Next, urine samples were collected over 0-24 h after the oral administrations and all urine samples were pretreated by a solid phase extraction (SPE) method. Finally, all samples were analyzed by a UPLC-LTQ-Orbitrap mass spectrometry coupled with an electrospray ionization source (ESI) that was operated in the negative ionization mode. Results: A total of 11 metabolites, including the parent drug and 10 phase II metabolites in rat urine, were first detected and interpreted based on accurate mass measurement, fragment ions, and chromatographic retention times. The results were based on the assumption that kurarinone glucuronidation was the dominant metabolite that was excreted in rat urine. Conclusion: The results from this work indicate that kurarinone in vivo is typically transformed to nontoxic glucuronidation metabolites, and these findings may help to characterize the metabolic profile of kurarinone.