3 resultados para HERBICIDE

em Bioline International


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Safeners are an important tool used to ensure the safe using of herbicide. The objective of this paper was to investigate the protective effect of four 3-dichloroacetyl oxazolidine safeners (3-dichloroacetyl-2,2-dimethyl-1,3-oxazolidine [R-28725], racemate of 3-dichloroacetyl-2,2-dimethyl-4- ethyl-1,3-oxazolidine, and its two chiral stereoisomers) in reducing the injury caused by imazethapyr. Physiological and biochemical tests were conducted under laboratory condition, by using seed treatment with safeners and soil treatment with imazethapyr, respectively. The interaction of two safeners (R-28725 and R-stereoisomer) and imazethapyr reduced the injury of maize significantly, and also increased glutathione content, activity of glutathione S-transferases, and activity of acetolactate synthase in maize. When induced by R-stereoisomer, the GSH content in root and in shoot increased 100.7% and 73.6%, respectively. When induced by R-28725, the GST activity in vivo increased threefold and the GST activity in vitro more than doubled. The kinetic parameter Vmax of GST in the maize treated with R-28725 and R-stereoisomer increased by 102.2% and 81.9%, respectively, compared with the control. The results also showed that R-28725 and R-stereoisomer induced glutathione S-transferases affinity for the substrate of conjugation reaction significantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alopecurus aequalis Sobol. is a common grass weed, which has become increasingly troublesome to control in China wheat fields. One A. aequalis population, collected from Anhui Province China, was suspected to be resistant to fenoxaprop-P-ethyl and mesosulfuron-methyl. This study aimed to establish the cross-resistance pattern using the purified subpopulation and explore the potential targetsite and non-target-site based resistance mechanisms. Sequencing results showed that a single nucleotide change of ATT to AAT was present in acetyl-CoA carboxylase (ACCase) gene of the resistant (R) plants, resulting in an Ile2041Asn amino acid substitution. Besides, another single nucleotide change of CCC to CGC was present in acetolactate synthase (ALS) gene of the R plants, resulting in a Pro197Arg amino acid substitution. The homozygous resistant plants were isolated and the seeds were used in whole-plant herbicide bioassays. Compared with the susceptible (S) population, R population displayed high level resistance to fenoxaprop-P-ethyl and mesosulfuronmethyl. Cross resistance patterns showed that the R population was highly resistant to clodinafop-propargyl, moderately resistant to pyroxsulam and flucarbazoncsodium, lowly resistant to pinoxaden, and susceptible to tralkoxydim, sethoxydim, and isoproturon. The pretreatment of piperonyl butoxide reduced the 50% growth reduction (GR50) value of fenoxaprop-P-ethyl, suggesting that target-site resistance and non-target-site resistance mechanisms were both present in fenoxaprop- P-ethyl-resistance of A. aequalis. This is the first report of ACCase Ile2041Asn and ALS Pro197Arg mutation in A. aequalis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weedy rice has been identified as a threat to rice production worldwide. Its phenotypic and genotypic diversity and its potential to compete against rice in all development stages from germination to maturity have resulted in a loss of rice yield and grain quality, which is remarkably high in directseeded rice cultivation. Weedy rice dormancy varies, it has a higher germination rate, and tolerates deeper germination depth compared to rice cultivars. Interactions of weedy rice with cultivars often reflect early vigor, more tillering, nutrient utilization ability for shoot development with respect to rice cultivars even though the latter also show an improvement in shoot development under competition. An exponential relationship has been reported between cultivated rice loss and weedy rice density: this is true for all rice cultivars. The degree of loss is dependent on the competitive ability of the rice cultivar being studied, and each weedy rice biotype also interacts differently. Hence, the need for a comprehensive study of the biology of various weedy rice variants. Difficulties arise in the management of weedy rice due to its physiological, anatomical, and morphological similarities to cultivated rice. The manipulation of the environment to improve cultivated rice production and suppress the emergence of weedy rice variants is important in the management of weedy rice, as well as other cultural practices and use of pesticides. The development of herbicide-resistant rice cultivars is necessary to totally eliminate the weedy rice variants. This review provides information on the competitive ability of weedy rice against rice cultivars; this information is essential to create management options to control weedy rice.