3 resultados para Epilepsy

em Bioline International


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Abdominal pain, in etiology sometimes difficult to be defined, is a frequent complaint in childhood. Abdominal epilepsy is a rare cause of abdominal pain. Objectives: In this article, we report on 5 year old girl patient with abdominal epilepsy. Methods: Some investigations (stool investigation, routine blood tests, ultrasonography (USG), electrocardiogram (ECHO) and electrocardiograpy (ECG), holter for 24hr.) were done to understand the origin of these complaints; but no abnormalities were found. Finally an EEG was done during an episode of abdominal pain and it was shown that there were generalized spikes especially precipitated by hyperventilation. The patient did well on valproic acid therapy and EEG was normal 1 month after beginning of the treatment. Discussion: The cause of chronic recurrent paroxymal abdominal pain is difficult for the clinicians to diagnose in childhood. A lot of disease may lead to paroxysmal gastrointestinal symptoms like familial mediterranean fever and porfiria. Abdominal epilepsy is one of the rare but easily treatable cause of abdominal pain. Conclusion: In conclusion, abdominal epilepsy should be suspected in children with recurrent abdominal pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: There is an increasing attention towards the relationship between oxidative stress and epilepsy. The effect of antiepileptic drugs on oxidant status is of major interest. Antiepileptic drugs can increase levels of free radicals, which consequently might lead to seizures. Carbamazepine (CBZ) is an antiepileptic drug commonly used in childhood and adolescence. Objectives: Therefore we aimed to investigate the effects of CBZ on total antioxidant status, total oxidant stress, and oxidative stress index. Patients and Methods: The study included 40 epileptic patients and 31 healthy children between 4 and 12 years of age. Serum CBZ level, total antioxidant capacity and total oxidant status were measured. Oxidative stress index was also calculated both in controls and patients. Results: In the epileptic group, decreased levels of total antioxidant capacity, increased total oxidative stress and oxidative stress index levels were found. Positive correlation between plasma CBZ levels and total oxidant status was observed. Conclusions: Antioxidant action could not be playing any role in antiepileptic effect of CBZ. Furthermore, increased oxidative stress induced by CBZ could be the cause of CBZ-induced seizures. Therefore combining CBZ with antioxidants could be beneficial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the anticonvulsant and sedative effects of Fufang Changniu Pills (FCP) and its probable mechanism of action in mice. Methods: The water decoction of FCP was prepared and the main constituents were determined by high performance liquid chromatography (HPLC). The anticonvulsant activities of FCP were evaluated by maximal electroshock (MES) and pentylenetetrazole (PTZ)-induced seizures in mice. Pentobarbital sodium-induced sleeping time and locomotor activity measurements were performed to evaluate the sedative effects of FCP in mice. Finally, PTZ-induced chronic seizures were established, and expressions of gamma-aminobutyric acid A receptor (GABA-A) and glutamic acid decarboxylase 65 (GAD65) in the brains of the mice were assayed by western blot in order to explore the probable mechanisms of action of the drug. Results: Gallic acid, liquiritin, cinnamyl alcohol, cinnamic acid and glycyrrhizic acid were detected in FCP decoction. FCP (50, 100 and 200 mg/kg) showed significant anticonvulsant and sedative effects on epileptic mice induced by MES (p < 0.05) and PTZ (p < 0.05). Moreover, pentobarbital sodium-induced sleeping time and locomotor activity tests showed that FCP possesses sedative effect (p < 0.05). Western blot data indicate that FCP significantly up-regulated GABA-A and GAD 65 in the brains of chronic epileptic rats (p < 0.05). Conclusion: FCP has significant anticonvulsant and sedative effects, and the mechanism of its action may be related to the up-regulation of GABA-A and GAD 65 in mice brain.