3 resultados para Arsenic remediation

em Bioline International


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presumed synergistic effect of combined amendment of crude oil spiked soil with oil palm bunch ash and sawdust was carried out in a laboratory experiment. Two kilogram (2 kg) of sandy soil was placed in each of five plastic vessels labeled TA, TB, TC, TD and TE. TA was left in its natural state while the others were each polluted with 6.7% v/w of crude oil. TB was not given any remediation amendment. TC and TD were each amended with 13.3% of oil palm bunch ash and sawdust respectively while TE was amended with 13.3% each of oil palm bunch ash and sawdust. The setups were replicated five times and watered twice weekly. Results showed that soil pH increased from 8.7±0.04 to 10.5±0.06, 5.3±0.01 to 8.5±0.04 and 5.6±0.18 to 11.5±0.15 for TC, TD and TE respectively. Percentage total petroleum hydrocarbon contents reduced by 65% for TC, TD and 52% for TE. Total organic carbon increased from 7.6±0.7 to 8.5±0.5%%, reduced from 4.0±0.1% to 3.7±0.3% and from 4.1±0.1% to 2.2±1.0% TC, TD and TE respectively. Total nitrogen increased from 0.66±0.1 to 0.69±0.0% for TC, remained nearly the same for TD and reduced from 0.4±0.0 to 0.2±0.0% for TE while average phosphorus increased from 0.4±0.0 to 23.0±4.2 mg/kg, 0.3±0.0 to 1.8±0.4 mg/kg and from 0.2±1.0 mg/kg to 52.6±4.6 mg/kg for TC, TD and TE respectively. Conclusively, combined amendment with oil palm bunch ash and sawdust did not induce synergism in soil total petroleum hydrocarbon content reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To develop a novel biotechnological method for removing toxic arsenic from two kinds of representative arsenic-containing ores using different mixed mesophilic acidophiles. Methods: Bioleaching of the two types of arsenic-containing ores by mixed arsenic-unadapted Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or mixed arsenic-adapted cultures, were carried out. Arsenic bioleaching ratios in the various leachates were determined and compared. Results: The results showed that the maximum arsenic leaching ratio obtained from realgar in the presence of mixed adapted cultures was 28.6 %. However, the maximum arsenic leaching ratio from realgar in the presence of mixed unadapted strains was only 12.4 %. Besides, maximum arsenic leaching ratios from arsenic-bearing refractory gold ore by mixed adapted strains or unadapted strains were 45.0 and 22.9 %, respectively. Oxidation of these two ores by sulfuric acid was insignificant, as maximum arsenic leaching ratios of realgar and arsenic-bearing refractory gold ore in the absence of any bacterium were only 2.8 and 11.2 %, respectively. Conclusion: Arsenic leaching ratio of realgar and refractory gold ore can be enhanced significantly in the presence of arsenic-adapted mesophilic acidophiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry (GFAAS) and hydride generation atomic absorption spectrometry (HGAAS) for trace analysis of arsenic (As) in natural herbal products (NHPs). Method: Arsenic analysis in natural herbal products and standard reference material was conducted using atomic absorption spectrometry (AAS), namely, hydride generation AAS (HGAAS) and graphite furnace (GFAAS). The samples were digested with HNO3–H2O2 in a ratio of 4:1 using microwaveassisted acid digestion. The methods were validated with the aid of the standard reference material 1515 Apple Leaves (SRM) from NIST Results: Mean recovery of three different samples of NHPs, using HGAAS and GFAAS, ranged from 89.3 - 91.4 %, and 91.7 - 93.0 %, respectively. The difference between the two methods was insignificant. A (P= 0.5), B (P=0.4) and C (P=0.88) Relative standard deviation (RSD) RSD, i.e., precision was 2.5 - 6.5 % and 2.3 - 6.7 % using HGAAS and GFAAS techniques, respectively. Recovery of arsenic in SRM was 98 and 102 % by GFAAS and HGAAS, respectively. Conclusion: GFAAS demonstrates acceptable levels of precision and accuracy. Both techniques possess comparable accuracy and repeatability. Thus, the two methods are recommended as an alternative approach for trace analysis of arsenic in natural herbal products.