5 resultados para intravenous drug administration

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis C infection (HCV) continues to disproportionately affect Hispanics/Latinos in the United States. Hispanic/Latino intravenous drug users (IDUs), because of their risky injection and sexual behaviors, are prone to HCV infection and rapid transmission of the virus to others via several routes. With a prevalence rate of approximately 75% among IDUs, it is imperative that transmission of HCV be prevented in this population. This study aims to examine the associations between demographic, injection and sexual risk factors to HCV infection in a group Hispanic/Latino IDUs in Miami-Dade County, Florida. Preliminary unadjusted results in this sample reveal that age (OR=4.592, p=0.004), weekly injection (OR=5.171, p=0.000), daily injection frequency (OR=3.856, p=0.000) and use of a dirty needle (OR=2.320, p= 0.006) were all significantly associated with HCV infection. Being born outside the U.S. was significantly negatively associated with HCV infection (OR=0.349, p=0.004). Additionally, having two or more sex partners in the past three months (OR=0.472, p=0.014) was negatively associated with HCV infection. After adjusting for all other variables, older age (AOR=7.470, p=0.006), weekly injection (AOR=3.238, p=0.007) and daily injection frequency (AOR=2.625, p=0.010) were all significantly associated with HCV infection. Being born outside the U.S. (AOR=0.369, p=0.019) was a significant protective factor for HCV infection, along with having two or more sex partners in the past three months (AOR=0.481, p=0.037). When analyzing the significant variables in a backward regression model, having 2 or more sex partners in the past three months was not significant at the p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis C infection (HCV) continues to disproportionately affect Hispanics/Latinos in the United States. Hispanic/Latino intravenous drug users (IDUs), because of their risky injection and sexual behaviors, are prone to HCV infection and rapid transmission of the virus to others via several routes. With a prevalence rate of approximately 75% among IDUs, it is imperative that transmission of HCV be prevented in this population. This study aims to examine the associations between demographic, injection and sexual risk factors to HCV infection in a group Hispanic/Latino IDUs in Miami-Dade County, Florida. Preliminary unadjusted results in this sample reveal that age (OR=4.592, p=0.004), weekly injection (OR=5.171, p=0.000), daily injection frequency (OR=3.856, p=0.000) and use of a dirty needle (OR=2.320, p= 0.006) were all significantly associated with HCV infection. Being born outside the U.S. was significantly negatively associated with HCV infection (OR=0.349, p=0.004). Additionally, having two or more sex partners in the past three months (OR=0.472, p=0.014) was negatively associated with HCV infection. After adjusting for all other variables, older age (AOR=7.470, p=0.006), weekly injection (AOR=3.238, p=0.007) and daily injection frequency (AOR=2.625, p=0.010) were all significantly associated with HCV infection. Being born outside the U.S. (AOR=0.369, p=0.019) was a significant protective factor for HCV infection, along with having two or more sex partners in the past three months (AOR=0.481, p=0.037). When analyzing the significant variables in a backward regression model, having 2 or more sex partners in the past three months was not significant at the p

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Florida citrus represents approximately 70 percent of the industry production in the United States; therefore, any associated agricultural and industrial contamination is of concern and a focus of attention. The use of synthetic organic chemicals has become a farmer's necessity in order to supply consumers with high quality products, free of pest damage. However, industrial citrus wastes and chemical residual levels worry not only government agencies but also consumers since they indicate a serious habitat risk. This study assesses citrus industrial processes and the paths that chemical substances follow from the time the citrus seed is planted until consumers get a final product as either fresh fruit or processed product. The study is built on information from United States Environmental Protection Agency (US EPA) manuals, Dade County Environmental Resources Management (DERM) inspection records, United States Food and Drug Administration (US FDA) regulations, Florida standards, journal publications, and research reports. Pollution prevention (P2 or prevention-of-pollution) alternatives are identified; alternatives are proposed, evaluated, and included. Strategies are described and pollution prevention opportunities proposed to minimize citrus wastes generation, chemical residuals in products, their environmental impact and health risk aspects while maximizing product quality.