2 resultados para Photoprotection

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the anatomy of expanding, mature, and senescing leaves of tropical plants for the presence of red pigments: anthocyanins and betacyanins. We studied 463 species in total, 370 genera, belonging to 94 families. This included 21 species from five families in the Caryophyllales, where betacyanins are the basis for red color. We also included 14 species of ferns and gymnosperms in seven families and 29 species with undersurface coloration at maturity. We analyzed 399 angiosperm species (74 families) for factors (especially developmental and evolutionary) influencing anthocyanin production during expansion and senescence. During expansion, 44.9% produced anthocyanins and only 13.5% during senescence. At both stages, relatively few patterns of tissue distributions developed, primarily in the mesophyll, and very few taxa produced anthocyanins in dermal and ground tissue simultaneously. Of the 35 species producing anthocyanins both in development and senescence, most had similar cellular distributions. Anthocyanin distributions were identical in different developing leaves of three heteroblastic taxa. Phylogeny has influenced the distribution of anthocyanins in the epidermis and mesophyll of expanding leaves and the palisade parenchyma during senescence, although these influences are not strong. Betacyanins appear to have similar distributions in leaves of taxa within the Caryophyllales and, perhaps, similar functions. The presence of anthocyanins in the mesophyll of so many species is inconsistent with the hypothesis of protection against UV damage or fungal pathogens, and the differing tissue distributions indicate that the pigments may function in different ways, as in photoprotection and freeradical scavenging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthocyanins are synthesized during leaf senescence in certain plants across virtually all biomes, but are most spectacular in the autumn foliage of temperate deciduous forests. The patterns of color production in senescing foliage depend at least partly upon species composition and their phenology. Both ecological and physiological explanations have been raised to explain why plants produce this pigment just before leaf fall. Physiological explanations, as photoprotection, predict that cyanic leaves would be better able to resorb nitrogen during the process of chlorophyll degradation. Ecological explanations predict better dispersal of propagules advertised by association with the brilliantly colored leaves (plausible for only a minority of species), or warning against egg-laying activity of herbivorous insects, as aphids. These hypotheses make predictions that we now can test, to help us understand this old mystery - and majestic phenomenon.