3 resultados para IGG ANTIBODIES TO HANTAVIRUS

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Recent epidemiologic, genetic, and molecular studies suggest infection and inflammation initiate certain cancers, including cancers of the prostate. Over the past several years, our group has been studying how mycoplasmas could possibly initiate and propagate cancers of the prostate. Specifically, Mycoplasma hyorhinis encoded protein p37 was found to promote invasion of prostate cancer cells and cause changes in growth, morphology and gene expression of these cells to a more aggressive phenotype. Moreover, we found that chronic exposure of benign human prostate cells to M. hyorhinis resulted in significant phenotypic and karyotypic changes that ultimately resulted in the malignant transformation of the benign cells. In this study, we set out to investigate another potential link between mycoplasma and human prostate cancer. Methods: We report the incidence of men with prostate cancer and benign prostatic hyperplasia (BPH) being seropositive for M. hyorhinis. Antibodies to M. hyorhinis were surveyed by a novel indirect enzyme-linked immunosorbent assay (ELISA) in serum samples collected from men presenting to an outpatient Urology clinic for BPH (N = 105) or prostate cancer (N = 114) from 2006-2009. Results: A seropositive rate of 36% in men with BPH and 52% in men with prostate cancer was reported, thus leading us to speculate a possible connection between M. hyorhinis exposure with prostate cancer. Conclusions: These results further support a potential exacerbating role for mycoplasma in the development of prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diagnosis of Von Willebrand's disease (VWD) may sometimes be difficult because of the variability of the results obtained over time in individuals. Moreover, blood group, age, pregnancy and inflammatory stimuli influence the level of Von Willebrand Factor (VWF). The purpose of this thesis was to screen and characterize antibodies to Von Willebrand factor and to evaluate the most promising ones in a gold- Sol assay for VWF on the CA-6000 analyzer. Seven different lots of Anti-VWF antibodies, 3 polyclonal and 4 monoclonal Ab's were screened and evaluated. Two of these antibodies (Sunol R01358 and MAVWF-AP) were selected for preparation of a Gold coated antibody solution. The preliminary testing of these gold coated antibodies on CA-6000 Analyzer showed no immunoreactivity toward VWF for both individual and pooled plasma (from normal healthy donors). Although measurement of VWF for normal plasma with this technique was not demonstrated, these data will be valuable for future work on the design of sensitive and accurate automated sol Gold Immunoassays for the diagnosis of VWD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation describes the development of a label-free, electrochemical immunosensing platform integrated into a low-cost microfluidic system for the sensitive, selective and accurate detection of cortisol, a steroid hormone co-related with many physiological disorders. Abnormal levels of cortisol is indicative of conditions such as Cushing’s syndrome, Addison’s disease, adrenal insufficiencies and more recently post-traumatic stress disorder (PTSD). Electrochemical detection of immuno-complex formation is utilized for the sensitive detection of Cortisol using Anti-Cortisol antibodies immobilized on sensing electrodes. Electrochemical detection techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) have been utilized for the characterization and sensing of the label-free detection of Cortisol. The utilization of nanomaterial’s as the immobilizing matrix for Anti-cortisol antibodies that leads to improved sensor response has been explored. A hybrid nano-composite of Polyanaline-Ag/AgO film has been fabricated onto Au substrate using electrophoretic deposition for the preparation of electrochemical immunosening of cortisol. Using a conventional 3-electrode electrochemical cell, a linear sensing range of 1pM to 1µM at a sensitivity of 66µA/M and detection limit of 0.64pg/mL has been demonstrated for detection of cortisol. Alternately, a self-assembled monolayer (SAM) of dithiobis(succinimidylpropionte) (DTSP) has been fabricated for the modification of sensing electrode to immobilize with Anti-Cortisol antibodies. To increase the sensitivity at lower detection limit and to develop a point-of-care sensing platform, the DTSP-SAM has been fabricated on micromachined interdigitated microelectrodes (µIDE). Detection of cortisol is demonstrated at a sensitivity of 20.7µA/M and detection limit of 10pg/mL for a linear sensing range of 10pM to 200nM using the µIDE’s. A simple, low-cost microfluidic system is designed using low-temperature co-fired ceramics (LTCC) technology for the integration of the electrochemical cortisol immunosensor and automation of the immunoassay. For the first time, the non-specific adsorption of analyte on LTCC has been characterized for microfluidic applications. The design, fabrication technique and fluidic characterization of the immunoassay are presented. The DTSP-SAM based electrochemical immunosensor on µIDE is integrated into the LTCC microfluidic system and cortisol detection is achieved in the microfluidic system in a fully automated assay. The fully automated microfluidic immunosensor hold great promise for accurate, sensitive detection of cortisol in point-of-care applications.