5 resultados para Complement C3

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian C3 is a pivotal complement protein, encoded for by a single gene. In some vertebrate species multiple C3 isoforms are products of different C3 genes. The goal of this study was to determine whether multiple genes encode for shark C3. A protocol was developed for the isolation of mRNA from shark blood for the isolation of C3 cDNA clones. RT-PCR amplification of mRNA, using sense (GCGEQNM) and antisense (TWLTAYV) primers encoding conserved regions of human C3, yielded 21 clones. The C3-like clones isolated shared 97% similarity with each other and 40% similarity to human C3. RACE-PCR amplification of shark liver RNA, using gene specific primers, yielded products ranging from 1800bp to 3000bp. Deduced amino acid sequence, corresponding to 408bp of the 1800bp fragment, was obtained which showed 51% similarity to human C3. These results suggest that nurse shark C3 might be encoded for by more than one gene. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian C3 is a complement protein which consists of an α chain (125kDa) and β chain (75kDa) held together by a disulfide bond. The a chain contains a conserved thiolester site which provides the molecule with opsonic properties. The protein is synthesized as a single pro-C3 molecule which is post-translationally modified. C3 genes have been identified in organisms from different phyla, however, the shark C3 gene remains to be cloned. Sequence data from the shark will contribute to understanding further the evolution of this key protein. To obtain additional sequence data for shark C3 genes a cDNA library was constructed and screened with a DIG-labeled C3 probe. Fifty clones were isolated and sequenced. Analysis identified four sequences that yielded positive alignments with C3 of a variety of organisms including human C3. Deduced amino acid sequence analysis confirmed a β/α cut site (RRRR), the CR3 and properdin binding sites, the catalytic histidine, and the reactive thiolester sequence. In the shark there are at least two C3-like genes as the gene sequence obtained is distinct from that previously described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One goal of comparative immunology is to derive inferences about evolutionary pathways in the development of immune-defense systems. Almost 700 million years ago, a major divergence occurred in the phylogeny of animals, spitting all descendants into either the protostome or deuterostome (includes vertebrates) lineages. Genes have evolved independently along these lineages for that amount of time. Cnidarians originated before that divergence event, and can hold clues as to which immune response genes are homologous to both lineages. This work uses the gorgonian coral, Swiftia exserta, for two major reasons: (1) because of their phylogenetic position, corals are an important animal model in studies concerning the phylogeny of immune-response genes, and (2) nothing is known about the genes controlling immunocompetence in corals. The work described here has important implications in both innate and adaptive immunity. ^ The vertebrate complement system is a major component of innate immunity. C3 is a critical component of the three pathways of complement. Because of its opsonic properties, a C3-like protein is expected to have evolved early. However, currently available data suggests that complement-like components are unique to the deuterostome lineage. This work describes the cloning and characterization of a C3-like gene from S. exserta. The deduced polypeptide sequence reveals conservation of multiple, functionally critical, sites while sharing physiochemical and structural properties with the complement components C3/C4/C5. ^ Antigen processing, via intracellular enzymatic proteasomes, is a major requirement of vertebrate adaptive immunity. These organelles have a catalytic core, through which pass intracellular proteins for degradation into peptides presentable to the immune system. LMP 7 is one component of the paralogous “immuno-proteasome”. LMP 7 is a paralog of the ubiquitous LMP X, but is restricted to vertebrates. While LMP 7 is absent in the coral, this work describes a coral LMP X gene. Phylogenetic analyses, along with hydropathy profiling of a critical portion of the invertebrate and vertebrate paralogous genes, suggests that some invertebrates have two diverging LMP X genes. In some cases, one LMP X protein shares characteristics with vertebrate LMP 7. This work presents new evidence for how the LMP X and 7 genes evolved. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Belowground biomass is a critical factor regulating ecosystem functions of coastal marshes, including soil organic matter (SOM) accumulation and the ability of these systems to keep pace with sea-level rise. Nevertheless, belowground biomass responses to environmental and vegetation changes have been given little emphasis marsh studies. Here we present a method using stable carbon isotopes and color to identify root and rhizomes of Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller (C3) and Spartina patens (Ait.) Muhl. (C4) occurring in C3− and C4-dominated communities in a Chesapeake Bay brackish marsh. The functional significance of the biomass classes we identified is underscored by differences in their chemistry, depth profiles, and variation in biomass and profiles relative to abiotic and biotic factors. C3 rhizomes had the lowest concentrations of cellulose (29.19%) and lignin (14.43%) and the lowest C:N (46.97) and lignin:N (0.16) ratios. We distinguished two types of C3 roots, and of these, the dark red C3 roots had anomalously high C:N (195.35) and lignin:N (1.14) ratios, compared with other root and rhizome classes examined here and with previously published values. The C4-dominated community had significantly greater belowground biomass (4119.1 g m−2) than the C3-dominated community (3256.9 g m−2), due to greater total root biomass and a 3.6-fold higher C3-root:rhizome ratio in the C4-dominated community. C3 rhizomes were distributed significantly shallower in the C4-dominated community, while C3 roots were significantly deeper. Variability in C3 rhizome depth distributions was explained primarily by C4 biomass, and C3 roots were explained primarily by water table height. Our results suggest that belowground biomass in this system is sensitive to slight variations in water table height (across an 8 cm range), and that the reduced overlap between C3 and C4 root profiles in the C4-dominated community may account for the greater total root biomass observed in that community. Given that future elevated atmospheric CO2 and accelerated sea-level rise are likely to increase C3 abundance in Atlantic and Gulf coast marshes, investigations that quantify how patterns of C3 and C4 belowground biomass respond to environmental and biological factors stand to improve our understanding of ecosystem-wide impacts of global changes on coastal wetlands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complement factor B and C2 are two central serine proteases of the alternative and classical complement pathways, respectively, that serve as the catalytic subunits of the C3 convertase. Research has been completed using a female Japanese medaka fish, (Oryzias latipes), and other teleost and elasmobrach species in order to isolate eDNA clones and perform linkage analysis of the Bf/C2 gene(s). To further analyze the evolution of the complement system in teleosts, different tissues than the ones from previous studies of medaka fish were analyzed for the constitutive gene expression of factor B and C2. Bf/C2 sequences were amplified by reverse transcription-polymerase chain reaction with primers corresponding to the common amino acid sequences shared by mammalian Bf and C2. Agarose gel electrophoresis was used to visualize sample bands and to calculate the concentration of gene expression of the Bf/C2 gene(s) in each tissue. All five tissue types, kidney, liver, muscle, testis, and spleen from a male medaka fish demonstrated Bf/C2 gene(s) expression, confirming that the messages of Bf/C2 gene(s) are distributed throughout the medaka fish. Tissues of the spleen, liver, and kidney contained the highest concentrations of expression of Bf/C2 gene( s ), while tissues of the muscle and testis contained the lowest concentrations. This research also determined that RT-PCR allowed for more sensitive analysis of gene expression than other molecular biology techniques such as Northern blotting analysis.