4 resultados para walking
em Aston University Research Archive
Resumo:
Background - Physical activity is particularly important for people with type 2 diabetes, as evidence suggests that any reduction in sedentary time is good for metabolic health. Aim - To explore type 2 diabetes patients' talk about implementing and sustaining physical activity. Design of study - Longitudinal, qualitative study using repeat in-depth interviews with 20 patients over 4 years following clinical diagnosis. Setting - Patients were recruited from 16 general practices and three hospitals across Lothian, Scotland. Results - Discussion, and salience, of physical activity was marginal in patient accounts of their diabetes management. Patients claimed to have only received vague and non-specific guidance about physical activity from health professionals, and emphasised a perceived lack of interest and encouragement. Aside from walking, physical activities which were adopted tended to attenuate over time. Patients' accounts revealed how walking a dog assisted this kind of activity maintenance over time. Three main themes are highlighted in the analysis: 1) incidental walking; 2) incremental physical activity gains; and 3) augmenting physical activity maintenance. The problems arising from walking without a dog (for example, lack of motivation) are also examined. Conclusion - Asking patients about pet preferences might seem tangential to medical interactions. However, encouraging dog walking or identifying another interest that promotes a regular commitment to undertake physical activity may yield long-term health benefits.
Resumo:
Objective: To examine the extent to which proxy-report measures adequately assess walking limitations and are interchangeable with self-report measures in stroke survivors. Design and Participants: Self-report, proxy-report, and observed performance measures of walking limitations were compared cross-sectionally on 3 occasions following the discharge from hospital of 101 stroke survivors. Correlations between measures, differences between mean scores, and agreement of self- and proxy reports were analyzed. Results and Conclusions: Self- and proxy-report measures correlated significantly with each other and with observed performance measures; differences between mean scores were not found. Agreement between individual self- and proxy-report pairs was poor, however, indicating that freely substituting proxy-report data for self-report data when self-report data are unavailable is inappropriate.
Resumo:
The research described in this PhD thesis focuses on proteomics approaches to study the effect of oxidation on the modification status and protein-protein interactions of PTEN, a redox-sensitive phosphatase involved in a number of cellular processes including metabolism, apoptosis, cell proliferation, and survival. While direct evidence of a redox regulation of PTEN and its downstream signaling has been reported, the effect of cellular oxidative stress or direct PTEN oxidation on PTEN structure and interactome is still poorly defined. In a first study, GST-tagged PTEN was directly oxidized over a range of hypochlorous acid (HOCl) concentration, assayed for phosphatase activity, and oxidative post-translational modifications (oxPTMs) were quantified using LC-MS/MS-based label-free methods. In a second study, GSTtagged PTEN was prepared in a reduced and reversibly H2O2-oxidized form, immobilized on a resin support and incubated with HCT116 cell lysate to capture PTEN interacting proteins, which were analyzed by LC-MS/MS and comparatively quantified using label-free methods. In parallel experiments, HCT116 cells transfected with a GFP-tagged PTEN were treated with H2O2 and PTENinteracting proteins immunoprecipitated using standard methods. Several high abundance HOCl-induced oxPTMs were mapped, including those taking place at amino acids known to be important for PTEN phosphatase activity and protein-protein interactions, such as Met35, Tyr155, Tyr240 and Tyr315. A PTEN redox interactome was also characterized, which identified a number of PTEN-interacting proteins that vary with the reversible inactivation of PTEN caused by H2O2 oxidation. These included new PTEN interactors as well as the redox proteins peroxiredoxin-1 (Prdx1) and thioredoxin (Trx), which are known to be involved in the recycling of PTEN active site following H2O2-induced reversible inactivation. The results suggest that the oxidative modification of PTEN causes functional alterations in PTEN structure and interactome, with fundamental implications for the PTEN signaling role in many cellular processes, such as those involved in the pathophysiology of disease and ageing.