13 resultados para polysaccharide

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grewia gum is obtained from the inner stem bark of the edible plant Grewia mollis Juss (Fam. Tiliaceae) which grows widely in the middle belt region of Nigeria, and is also cultivated. The dried and pulverised inner stem bark is used as a thickening agent in some food delicacies in that region of the country. This ability of the material to increase solution viscosity has generated a lot of interest and is the catalysing momentum for this research. Such materials have been used as stabilizers or suspending agents in cosmetics, foods and liquid medications, and as mucoadhesives and controlled release polymeric matrices in solid dosage forms. The physicochemical characterization of candidate excipients forms an essential step towards establishing suitability for pharmaceutical application. For natural gums, this usually requires isolation of the gum from the storage site by extraction processes. Grewia polysaccharide gum was extracted and dried using techniques such as air-drying, freeze-drying or spray-drying. Component analysis of the gum showed that it contains five neutral sugars: glucose, galactose, rhamnose, arabinose and xylose. The gum contains traces of elements such as zinc, magnesium, calcium and phosphorus. At low substance weight, the gum hydrates in aqueous medium swelling and dispersing to give a highly viscous dispersion with pseudoplasmic flow behaviour. The method by which drying is achieved can have significant effect on some physicochemical properties of the gum. Consequently, the intrinsic viscosity and molecular weight, and parameters of powder flow were shown to differ with the method of drying. The gum has good thermal stability. In comparison with established excipients, grewia gum may be preferable to gum Arabic or sodium carboxymethylcellulose as a suspending agent in ibuprofen suspension formulations. The release retardant property of the gum was superior to guar and Metolose® in ibuprofen matrices. Similarly, carboxy methylcellulose, Methocel®, gum Arabic or Metolose® may not be preferable to grewia gum when controlled release of a soluble drug like cimetidine is indicated. The mucoadhesive performance of the gum compared favourably with excellent mucoadhesives such as hydroxypropyl methylcellulose, carboxymethylcellulose, guar and carbopol 971 P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MRI of fluids containing lipid coated microbubbles has been shown to be an effective toot for measuring the local fluid pressure. However, the intrinsically buoyant nature of these microbubbles precludes lengthy measurements due to their vertical migration under gravity and pressure-induced coalescence. A novel preparation is presented which is shown to minimize both these effects for at least 25 min. By using a 2% polysaccharide gel base with a small concentration of glycerol and 1,2-distearoyl-sn-glycero-3-phosphocholine coated gas microbubbles, MR measurements are made for pressures between 0.95 and 1.44 bar. The signal drifts due to migration and amalgamation are shown to be minimized for such an experiment whilst yielding very high NMR sensitivities up to 38% signal change per bar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grewia polysaccharide gum, a potential pharmaceutical excipient was extracted from the inner stem bark of Grewia mollis, thereupon drying was achieved by three techniques: air-drying, freeze-drying and spray-drying. Analysis of the monosaccharide composition including 1H and 13C NMR spectroscopic analysis of the polysaccharide gum was carried out. The effect of the drying methods on the physicochemical properties of the gum was evaluated by Fourier transformed infra-red (FT-IR) spectroscopy, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry and gel permeation chromatography. Monosaccharide sugar analysis revealed that the gum is composed of glucose, rhamnose, galactose, arabinose and xylose as the main neutral sugars. These were supported by the results from 1H and 13C NMR spectroscopic analysis. FT-IR and solid-state NMR results indicated that drying technique has little effect on the structure of the polysaccharide gum but XPS showed that surface chemistry of the gum varied with drying methods. Thermogravimetric analyses showed that oxidation onset varied according to the drying method. The molecular weight was also dependent on the drying technique. For industrial extrapolation, air-drying may be preferable to spray-drying and freeze-drying when relative cost, product stability and powder flow are required, for example in tablet formulation. © 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monoclonal and polyclonaI antibodies have been produced for use in immunological assays for the detection of Burkholderia pseudomallei and Burkholderia mallei. Monoclonal antibodies recognising a high molecular weight polysaccharide material found in some strains of both species have been shown to be effective in recognising B. pseudomallei and B. mallei and distinguishing them from other organisms. The high molecular weight polysaccharide material is thought to be the capsule of B. pseudomallei and B. mallei and may have important links with virulence. B. pseudomallei and B. mallei are known to be closely related, sharing many epitopes, but antigenic variation has been demonstrated within both the species. The lipopolysaccharide from strains of B. pseudomal/ei and B. mallei has been isolated and the silver stain profiles found to be visually very similar. A monoclonal antibody raised to B. mallei LPS has been found to recognise both B. mallei and B. pseudomallei strains. However, in a small number of B. pseudomallei strains a visually atypical LPS profile has been demonstrated. A monoclonal ant ibody rai sed against this atypical LPS showed no recognition of the typical LPS profile of either B. mallei or B. pseudomallei. This atypical LPS structure has not been reported and may be immunologically distinct from the typical LPS. Molecular biology and antibody engineering techniques have been used in an attempt to produce single-chain antibody fragments reactive to B. pseudomallei. Sequencing of one of the single-chain antibody fragments produced showed high homology with murine immunoglobulin genes, but none of the single-chain antibody fragments were found to be specific to B. pselldomallei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell surface properties of the basidiomycete yeast Cryptococcus neoformans were investigated with a combination of novel and well proven approaches. Non-specific cell adhesion forces, as well as exposed carbohydrate and protein moieties potentially associated with specific cellular interaction, were analysed. Experimentation and analysis employed cryptococcal cells of different strains, capsular status and culture age. Investigation of cellular charge by particulate microelectrophoresis revealed encapsulated yeast forms of C. neoformans manifest a distinctive negative charge regardless of the age of cells involved; in turn, the neutral charge of acapsulate yeasts confirmed that the polysaccharide capsule, and not the cell wall, was responsible for this occurrence. Hydrophobicity was measured by MATH and HICH techniques, as well as by the attachment of polystyrene microspheres. All three techniques, where applicable, found C. neoformans yeast to be consistently hydrophilic; this state varied little regardless of strain and culture age. Cell surface carbohydrates and protein were investigated with novel fluorescent tagging protocols, flow cytometry and confocal microscopy. Cell surface carbohydrate was identified by controlled oxidation in association with biotin hydrazide and fluorescein-streptavidin tagging. Marked amounts of carbohydrate were measured and observed on the cell wall surface of cryptococcal yeasts. Furthermore, tagging of carbohydrates with selective fluorescent lectins supported the identification, measurement and observation of substantial amounts of mannose, glucose and N-acetyl-glucosamine. Cryptococcal cell surface protein was identified using sulfo-NHS-biotin with fluorescein-streptavidin, and then readily quantified by flow cytometry. Confocal imaging of surface exposed carbohydrate and protein revealed common localised areas of vivid fluorescence associated with buds, bud scars and nascent daughter cells. Carbohydrate and protein fluorescence often varied between strains, culture age and capsule status of cells examined. Finally, extension of protein tagging techniques resulted in the isolation and extraction of two biotinylated proteins from the yeast cell wall surface of an acapsulate strain of C.neoformans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are currently few biomaterials which combine controlled degradation rates with ease of melt processability. There are however, many applications ranging from surgical fixation devices to drug delivery systems which require such combination properties. The work in this thesis is an attempt to increase the availability of such materials. Polyhydroxybutyrate-polyhydroxyvalerate copolymers are a new class of potentially biodegradable materials, although little quantitative data relating to their in vitro and in vivo degradation behaviour exists. The hydrolytic degradation of these copolymers has been examined in vitro under conditions ranging from `physiological' to extremes of pH and elevated temperature. Progress of the degradation process was monitored by weight loss and water uptake measurement, x-ray diffractometry, optical and electron microscopy, together with changes in molecular weight by gel permeation chromatography. The extent to which the degradation mechanism could be modified by forming blends with polysaccharides and polycaprolactone was also investigated. Influence of the valerate content, molecular weight, crystallinity, together with the physical form of the sample, the pH and the temperature of the aqueous medium on the hydrolytic degradation was investigated. Its progress was characterised by an initial increase in the wet weight, with concurrent decrease in the dry weight as the amorphous regions of the polymer are eroded, thereby producing an increase in matrix porosity. With the polysaccharide blends, this initial rate is dramatically affected, and erosion of the polysaccharide from the matrix markedly increases the internal porosity which leads to the eventual collapse of the matrix, a process which occurs, but less rapidly, in the degradation of the unblended polyhydroxybutyrate-polyhydroxyvalerate copolymers. Surface energy measurement and goniophotometry proved potentially useful in monitoring the early stages of the degradation, where surface rather than bulk processes predominate and are characterised by little weight loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Centrifugal spinning is a novel fibre-forming process that readily permits the incorporation of additives while avoiding the thermal damage often associated with conventional melt spinning. Centrifugal spinning of a viscous solution of poly(3-hydroxybutyrate) (PHB) mixed with pectin was used to fabricate a range of fibres containing different concentrations of this biologically active agent. The influence of this blending on fibre morphology and in vitro degradation in an accelerated hydrolytic model at 70 ?C and pH of 10.6 is reported. RESULTS: Blending influenced the physiochemical properties of the fibres, andthis significantly affected thedegradation profile of both the fibre and its PHB constituent. A greater influence on degradation was exerted by the type of pectin and its degree of esterification than by variations in its loading. CONCLUSION: Centrifugal spinning permits the fabrication of composite fibrous matrices from PHB and pectin. Incorporation of the polysaccharide into the fibres can be used to manipulate degradation behaviour and demonstrates a model for doping of matrices with active biological constituents. The unique features of the centrifugal spinning process, as illustrated by the structure of the fibres and the degradation profiles, suggest possible applications of centrifugally spun biopolymers as wound scaffolding devices and in tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha-modified minimum essential medium (αMEM) has been found to cross-link a 1% gellan gum solution, resulting in the formation of a self-supporting hydrogel in 1:1 and 5:1 ratios of polysaccharide: αMEM. Rheological data from temperature sweeps confirm that in addition to orders of magnitude differences in G' between 1% gellan and 1% gellan with αMEM, there is also a 20°C increase in the temperature at which the onset of gelation takes place when αMEM is present. Frequency sweeps confirm the formation of a true gel; mechanical spectra for mixtures of gellan and αMEM clearly demonstrate G' to be independent of frequency. It is possible to immobilize cells within a three-dimensional (3D) gellan matrix that remain viable for up to 21 days in culture by adding a suspension of rat bone marrow cells (rBMC) in αMEM to 1% gellan solution. This extremely simple approach to cell immobilization within 3D constructs, made possible by the fact that gellan solutions cross-link in the presence of millimolar concentrations of cations, poses a very low risk to a cell population immobilized within a gellan matrix and thus indicates the potential of gellan for use as a tissue engineering scaffold. © 2007 Sage Publications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundamental analytical pyrolysis studies of biomass from Polar seaweeds, which exhibit a different biomass composition than terrestrial and micro-algae biomass were performed via thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass-spectrometry (Py-GC/MS). The main reason for this study is the adaptation of these species to very harsh environments making them an interesting source for thermo-chemical processing for bioenergy generation and production of biochemicals via intermediate pyrolysis. Several macroalgal species from the Arctic region Kongsfjorden, Spitsbergen/Norway (Prasiola crispa, Monostroma arcticum, Polysiphonia arctica, Devaleraea ramentacea, Odonthalia dentata, Phycodrys rubens, Sphacelaria plumosa) and from the Antarctic peninsula, Potter Cove King George Island (Gigartina skottsbergii, Plocamium cartilagineum, Myriogramme manginii, Hymencladiopsis crustigena, Kallymenia antarctica) were investigated under intermediate pyrolysis conditions. TGA of the Polar seaweeds revealed three stages of degradation representing dehydration, devolatilization and decomposition of carbonaceous solids. The maximum degradation temperatures Prasiola crispa were observed within the range of 220-320 C and are lower than typically obtained by terrestrial biomass, due to divergent polysaccharide compositions. Biochar residues accounted for 33-46% and ash contents of 27-45% were obtained. Identification of volatile products by Py-GC/MS revealed a complexity of generated chemical compounds and significant differences between the species. A widespread occurrence of aromatics (toluene, styrene, phenol and 4-methylphenol), acids (acetic acid, benzoic acid alkyl ester derivatives, 2-propenoic acid esters and octadecanoic acid octyl esters) in pyrolysates was detected. Ubiquitous furan-derived products included furfural and 5-methyl-2-furaldehyde. As a pyran-derived compound maltol was obtained by one red algal species (P. rubens) and the monosaccharide d-allose was detected in pyrolysates in one green algal (P. crispa). Further unique chemicals detected were dianhydromannitol from brown algae and isosorbide from green algae biomass. In contrast, the anhydrosugar levoglucosan and the triterpene squalene was detected in a large number of pyrolysates analysed. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grewia gum is a naturally occurring polysaccharide which has potential as a pharmaceutical excipient. Differential scanning calorimetry and Fourier transform infrared (FT-IR) spectroscopy techniques were used to examine the thermal and molecular behaviours, respectively, of mixtures of grewia gum with cimetidine, ibuprofen or standard excipients, to assess potential interactions. No disappearance or broadening of the melting endotherm was seen with cimetidine or ibuprofen. Similarly, there was no interaction between grewia gum and the standard excipients tested. The results obtained using thermal analyses were supported by FT-IR analysis of the material mixtures. Grewia gum is an inert natural polymer which can be used alone or in combination with other excipients in the formulation of pharmaceutical dosage forms. © 2011 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pyrolytic behaviour of individual component in biomass needs to be understood to gain insight into the mechanism of biomass pyrolysis. A comparative study on the pyrolysis of cellulose (hexose-based polysaccharides) and hemicallulose (pentose-based polysaccharides) is performed by two sets of experiments including TG analysis and Py-GC-MS/FTIR. The samples of these two polysaccharide components are thermally decomposed in TGA at the heating rate of 5 and 60 K/min to demonstrate the different characteristics of mass loss stage(s) between them. The yield of pyrolytic products is examined by a fluidized-bed fast pyrolysis unit. The experiment confirms that cellulose mainly contributes to bio-oil production (reaching the maximum of 72% at 580 °C), while hemicellulose works as an important precursor for the char production (∼25%). The compounds in the gaseous mixture (CO and CO2) and bio-oil (levoglucosan, furfural, aldehyde, acetone and acetic acid) are further characterized by GC-MS for cellulose and GC-FTIR for hemicellulose, and their formations are investigated thoroughly. © 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To compare the mucoadhesive performance of grewia polysaccharide gum with those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose and carbopol 971P. Methods: Grewia polysaccharide gum compacts or gels as well as those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose or carbopol 971P were prepared. Texturometric and tensile analysis of the polymer gels and compacts were carried out using a software-controlled penetrometre, TA.XTPlus texture analyzer. The polymer gels were evaluated for hardness, stickiness, work of cohesion and work of adhesion. Furthermore, the detachment force of the polymer compacts from a mucin substrate was evaluated. Results: The work of adhesion of guar gels was significantly greater than that of grewia gels (p < 0.001) but the latter showed a significantly greater work of adhesion than carboxymethylcellulose gels (p < 0.05) and hydroxypropyl methylcellulose gels (p < 0.001). However, the work of cohesion for grewia/mucin gel mixture was significantly greater (p < 0.001) than those of carboxymethylcellulose/mucin, hydroxypropyl methylcellulose/mucin and carbopol 971P/mucin gel blends. The difference between the mucoadhesive performance of grewia compacts and those of hydroxypropyl methylcellulose and carbopol 971P compacts was insignificant (p > 0.05). Conclusion: Grewia polysaccharide gum demonstrated good mucoadhesive properties, comparable to those of carbopol 971P, carboxymethylcellulose, guar gum and hydroxypropyl methylcellulose, and therefore, should be suitable for the formulation of retentive drug delivery devices. © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grewia gum was extracted from the inner stem bark of Grewia mollis and characterized by several techniques such as gas chromatography (GC), gel permeation chromatography (GPC), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis of the extracted sample. Spectroscopic techniques such as x-ray photoelectron spectroscopy (XPS), fourier-transformed infrared (FT-IR), solid-state nuclear magnetic resonance (NMR), and 1H and 13C NMR techniques were also used to characterize the gum. The results showed that grewia gum is a typically amorphous polysaccharide gum containing glucose, rhamnose, galactose, arabinose and xylose as neutral sugars. It has an average molecular weight of 5925 kDa expressed as the pullulan equivalent. The gum slowly hydrated in water, dispersing and swelling to form a highly viscous dispersion exhibiting pseudoplastic flow behaviour. The polysaccharide gum is thermally stable and may have application as stabilizer or suspending agent in foods, cosmetics and in pharmaceuticals. It may have application as a binder or sustained-release polymer matrix in tablets or granulations. © IPEC-Americas Inc.