14 resultados para mitogen-induced proliferation

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

VEGF receptor-2 plays a critical role in endothelial cell proliferation during angiogenesis. However, regulation of receptor activity remains incompletely explained. Here, we demonstrate that VEGF stimulates microvascular endothelial cell proliferation in a dose-dependent manner with VEGF-induced proliferation being greatest at 5 and 100 ng/ml and significantly reduced at intermediate concentrations (>50% at 20 ng/ml). Neutralization studies confirmed that signaling occurs via VEGFR-2. In a similar fashion, ERK/MAPK is strongly activated in response to VEGF stimulation as demonstrated by its phosphorylation, but with a decrease in phosphoryation at 20 ng/ml VEGF. Immunoblotting analysis revealed that VEGF did not cause a dose-dependent change in expression of VEGFR-2 but instead resulted in reduced phosphorylation of VEGFR-2 when cells were exposed to 10 and 20 ng/ml of VEGF. VEGFR-2 dephosphorylation was associated with an increase in the protein tyrosine phosphatase, SH-PTP1, and endothelial nitric oxide synthase (eNOS). Immunoprecipitation and selective immunoblotting confirmed the association between VEGFR-2 dephosphorylation and the upregulation of SH-PTP1 and eNOS. Transfection of endothelial cells with antisense oligonucleotide against VEGFR-2 completely abolished VEGF-induced proliferation, whereas anti SH-PTP1 dramatically increased VEGF-induced proliferation by 1 and 5-fold at 10 and 200 ng/ml VEGF, respectively. Suppression of eNOS expression only abolished endothelial cell proliferation at VEGF concentrations above 20 ng/ml. Taken together, these results indicate that activation of VEGFR-2 by VEGF enhances SH-PTP1 activity and eNOS expression, which in turn lead to two diverse events: one is that SH-PTP1 dephosphorylates VEGFR-2 and ERK/MAPK, which weaken VEGF mitogenic activity, and the other is that eNOS increases nitric oxide production which in turn lowers SH-PTP1 activity via S-nitrosylation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective-We previously demonstrated that upregulation of intermediate-conductance Ca2+ -activated K+ channels (KCa 3.1) is necessary for mitogen-induced phenotypic modulation in isolated porcine coronary smooth muscle cells (SMCs). The objective of the present study was to determine the role of KCa3.1 in the regulation of coronary SMC phenotypic modulation in vivo using a swine model of postangioplasty restenosis. Methods and Results-Balloon angioplasty was performed on coronary arteries of swine using either noncoated or balloons coated with the specific KCa3.1 blocker TRAM-34. Expression of KCa3.1, c-jun, c-fos, repressor element-1 silencing transcription factor (REST), smooth muscle myosin heavy chain (SMMHC), and myocardin was measured using qRT-PCR in isolated medial cells 2 hours and 2 days postangioplasty. KCa3.1, c-jun, and c-fos mRNA levels were increased 2 hours postangioplasty, whereas REST expression decreased. SMMHC expression was unchanged at 2 hours, but decreased 2 days postangioplasty. Use of TRAM-34 coated balloons prevented KCa3.1 upregulation and REST downregulation at 2 hours, SMMHC and myocardin downregulation at 2 days, and attenuated subsequent restenosis 14 and 28 days postangioplasty. Immunohistochemical analysis demonstrated corresponding changes at the protein level. Conclusion-Blockade of KCa3.1 by delivery of TRAM-34 via balloon catheter prevented smooth muscle phenotypic modulation and limited subsequent restenosis. © 2008 American Heart Association, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Concanavalin A, a T cell mitogen enhanced DNA synthesis in murine splenocytes. Amongst the early signals prior to this event was an increase in cytosolic calcium derived from both intra- and extracellular sources. The requirements for extracellular calcium persisted for four hours after the lectin administration which itself was needed for six hours. Putative calcium channel antagonists and calmodulin inhibitors blocked ihe increase in DNA synthesis. The calcium signal was mimicked by application of the ionophore, A23187, although no increase in DNA synthesis occurred. An activator of protein kinase C, 12-0- tetradecanoylphorbol 13-acetate, had little effect in isolation but the combined application of these two agents greatly enhanced DNA synthesis. The natural mediators of these events are presumed to be inositol trisphosphate and diacylglycerol derived from phosphatidylinositol bisphosphate hydrolysis. Lectin application and protein kinase C activation both increased intracellular pH possibly as a result of Na'l'/H"'' exchange since amiloride an inhibitor of this antiporter inhibited lectin induced DNA synthesis. The calcium and hydrogen ionic changes occur within minutes of lectin application; the protracted requirement for this mitogen suggests further signalling mechanisms occur to elicit maximum DNA synthesis in these cells. Gonadectomy caused an increase in thymic and splenic weight. Spleno-cytes derived from castrated mice showed no change in mitogen response whereas those from ovariectomised mice demonstrated a reduced lectin sensitivity. Testosterone, 5 a dihydrotestosterone, a and 0 oestradiol all inhibited lectin induced DNA synthesis but only at pharmacological concentrations. Testosterone glucuronide and cholesterol were without effect Studies with mouse serum fractions of differing steroidal status were unable to confirm the presence or absence of serum factors which might mediate the effects of steroid on lymphoid cells, all fractions tested inhibited lymphocyte transformation. Both interleukin-2 and lipopolysaccharide induced splenocyte mitogene-sis was also impaired by high steroid concentrations in vitro, suggesting that steroids mediate their effect by a non-specific, non-receptor-mediated event.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quiescent rat thymocytes were stimulated to divide by a variety of agents. One such mitogen was the neurotransmitter acetylcholine which exhibited a biphasic action. Interaction with low affinity nicotinic receptors was linked with an obligatory requirement for magnesium ions whereas combination with high affinity muscarinic receptors induced mitosis only if calcium ions were present in the medium. Binding of acetylcholine to its muscarinic receptor enhanced calcium influx and increased intracellular calcium levels causing calmodulin activation, a necessary prelude to DNA synthesis and mitosis. Nicotinic receptor activation may be associated with a magnesium influx and stimulation of cells in a calmodulin-independent fashion. Parathyroid hormone and its analogues exhibited only a monophasic mitogenic action. This response was linked to calcium influx, a rise in cytosolic calcium and calmodulin activation. Parathyroid hormone did not stimulate adenylate cyclase in thymocytes and decreased cellular cyclic AMP concentrations. Picomolar amounts of interleukin-2 (IL-2) also stimulated division in thymocytes derived from 3-month old rats by binding to high affinity receptors. The response in thymocytes from newborn and foetal animals was greater reflecting the larger proportion of cells bearing receptors at this age. The mitogenic effect of IL-2 was abolished by a monoclonal antibody directed against the IL-2 receptor. Injections of IL-2 itself or the administration of IL-2 secreting activated syngeneic spleen cells also stimulated proliferation of both thymus and bone marrow cells in vivo. Likewise immunisation with pertussis toxin, which enhances endogenous IL2 production, also increased mitosis in these tissues. Calcium influx, increased cytosolic Ca2+ levels and calmodulin activation are associated features of the mitogenic action of IL-2. Interleukin-1 was also found to be mitogenic in thymic lymphocyte cultures. The responses to this mitogen and to parathyroid hormone and acetylcholine were not inhibited by the anti-IL2 receptor antibody suggesting that the thymic lymphocyte bears discrete receptors for these agents. Subtle interactions of hormones, neurotransmitters and interleukins may thus contribute to the turnover and control of lymphoid cells in the thymus and perhaps bone-marrow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both tumor necrosis factor-alpha (TNF-alpha)/interferon-gamma (IFN-gamma) and angiotensin II (ANG II) induced an increase in total protein degradation in murine myotubes, which was completely attenuated by treatment with beta-hydroxy-beta-methylbutyrate (HMB; 50 microM). There was an increase in formation of reactive oxygen species (ROS) within 30 min, as well as an increase in the activity of both caspase-3 and -8, and both effects were attenuated by HMB. Moreover, inhibitors of caspase-3 and -8 completely attenuated both ROS formation and total protein degradation induced by TNF-alpha/IFN-gamma and ANG II. There was an increased autophosphorylation of double-stranded RNA-dependent protein kinase (PKR), which was attenuated by the specific caspase-3 and -8 inhibitors. Neither ROS formation or protein degradation occurred in myotubes expressing a catalytically inactive PKR variant, PKRDelta6, in response to TNF-alpha/IFN-gamma, compared with myotubes expressing wild-type PKR, although there was still activation of caspase-3 and -8. HMB also attenuated activation of PKR, suggesting that it was important in protein degradation. Formation of ROS was attenuated by rotenone, an inhibitor of the mitochondrial electron transport chain, nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase, and SB 203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), which also attenuated total protein degradation. Activation of p38 MAPK by PKR provides the link to ROS formation. These results suggest that TNF-alpha/IFN-gamma and ANG II induce muscle protein degradation by a common signaling pathway, which is attenuated by HMB, and that this involves the initial activation of caspase-3 and -8, followed by autophosphorylation and activation of PKR, which then leads to increased ROS formation via activation of p38 MAPK. Increased ROS formation is known to induce protein degradation through the ubiquitin-proteasome pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proteolysis-inducing factor (PIF) is produced by cachexia-inducing tumours and initiates protein catabolism in skeletal muscle. The potential signalling pathways linking the release of arachidonic acid (AA) from membrane phospholipids with increased expression of the ubiquitin-proteasome proteolytic pathway by PIF has been studied using C2C12 murine myotubes as a surrogate model of skeletal muscle. The induction of proteasome activity and protein degradation by PIF was blocked by quinacrine, a nonspecific phospholipase A2 (PLA2) inhibitor and trifluroacetyl AA, an inhibitor of cytosolic PLA2. PIF was shown to increase the expression of calcium-independent cytosolic PLA2, determined by Western blotting, at the same concentrations as those inducing maximal expression of 20S proteasome α-subunits and protein degradation. In addition, both U-73122, which inhibits agonist-induced phospholipase C (PLC) activation and D609, a specific inhibitor of phosphatidylcholine-specific PLC also inhibited PIF-induced proteasome activity. This suggests that both PLA 2 and PLC are involved in the release of AA in response to PIF, and that this is important in the induction of proteasome expression. The two tyrosine kinase inhibitors genistein and tryphostin A23 also attenuated PIF-induced proteasome expression, implicating tyrosine kinase in this process. PIF induced phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) at the same concentrations as that inducing proteasome expression, and the effect was blocked by PD98059, an inhibitor of MAPK kinase, as was also the induction of proteasome expression, suggesting a role for MAPK activation in PIF-induced proteasome expression. © 2003 Cancer Research UK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic systemic immunosuppression in cell replacement therapy restricts its clinical application. This study sought to explore the potential of cell-based immune modulation as an alternative to immunosuppressive drug therapy in the context of pancreatic islet transplantation. Human amniotic epithelial cells (AEC) possess innate anti-inflammatory and immunosuppressive properties that were utilized to create localized immune privilege in an in vitro islet cell culture system. Cellular constructs composed of human islets and AEC (islet/AEC) were bioengineered under defined rotational cell culture conditions. Insulin secretory capacity was validated by glucose challenge and immunomodulatory potential characterized using a peripheral blood lymphocyte (PBL) proliferation assay. Results were compared to control constructs composed of islets or AEC cultured alone. Studies employing AEC-conditioned medium examined the role of soluble factors, and fluorescence immunocytochemistry was used to identify putative mediators of the immunosuppressive response in isolated AEC monocultures. Sustained, physiologically appropriate insulin secretion was observed in both islets and islet/AEC constructs. Activation of resting PBL proliferation occurred on exposure to human islets alone but this response was significantly (p <0.05) attenuated by the presence of AEC and AEC-conditioned medium. Mitogen (phytohaemagglutinin, 5 µg/ml)-induced PBL proliferation was sustained on contact with isolated islets but abrogated by AEC, conditioned medium, and the islet/AEC constructs. Immunocytochemical analysis of AEC monocultures identified a subpopulation of cells that expressed the proapoptosis protein Fas ligand. This study demonstrates that human islet/AEC constructs exhibit localized immunosuppressive properties with no impairment of ß-cell function. The data suggest that transplanted islets may benefit from the immune privilege status conferred on them as a consequence of their close proximity to human AEC. Such an approach may reduce the need for chronic systemic immunosuppression, thus making islet transplantation a more attractive treatment option for the management of insulin-dependent diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purified B-cells fail to proliferate in response to the strong thymus-independent (TI) antigen Lipopolysaccharide (LPS) in the absence of macrophages (Corbel and Melchers, 1983). The fact that macrophages, or factors derived from them are required is supported by the inability of marginal zone B-cells in infants to respond to highly virulent strains of bacteria such as Neisseria meningitidis and Streptococcus pneumoniae (Timens, 1989). This may be due to the lack of CD21 expression on B-cells in infants which could associate with its co-receptor (C3d) on adjacent macrophages. It is not clear whether cell surface contacts and/or soluble products are involved in lymphocyte-macrophage interactions in response to certain antigens. This thesis describes the importance of the macrophage in lymphocyte responses to T-dependent (TD) and TI antigens. The major findings of this thesis were as follows: (1). Macrophages were essential for a full proliferative response to a range of T - and B-cell mitogens and TI-1 and TI-2 antigens, including Concanavalin A, LPS, Pokeweed mitogen (PWM), Dextran sulphate, Phytohaemagglutinin-P (PHA-P) and Poly[I][C]. (2). A ratio of 1 macrophage to 1000 lymphocytes was sufficient for the mitogens to exert their effects. (3). The optimal conditions were established for the activation of an oxidative burst in cells of the monocyte/macrophage lineage as measured by luminometry. The order of ability was OpZ >PMA/lonomycin >f-MLP >Con A >DS >PHA >Poly[I][C] >LPS >PWM. Responses were only substantial and protracted with OpZ and PMA. Peritoneal macrophages were the most responsive cells, whereas splenic and alveolar macrophages were significantly less active and no response could be elicited with Kupffer cells, thus demonstrating heterogeneity between macrophages. (4). Activated macrophages that were then fixed with paraformaldehyde were unable to restore mitogenic responsiveness, even with a ratio of 1 macrophage to 5 lymphocytes. (5). Although highly purified T- and B-cells could respond to mitogen provided live macrophages were present, maximum activation was only observed when all 3 cell types were present. (6). Supernatants from purified macrophage cultures treated with a range of activators were able to partially restore lymphocyte responses to mitogen in macrophage-depleted splenocyte cultures, and purified T - and B-cell cultures. In fact supernatants from macrophages treated with LPS for only 30 minutes could restore responsiveness. Supernatants from OpZ treated macrophages were without effect. (7). Macrophage supernatants could not induce proliferation in the absence of mitogen. They therefore provide a co-mitogenic signal required by lymphocytes in order to respond to mitogen. (8). Macrophage product profiles revealed that LPS and Con A-treated macrophage supernatants showed elevated levels of IL-1β, TNF -α L TB4 and TXB2. These products were therefore good candidates as the co-mitogenic factor. The possible inhibitory factors secreted by OpZ-treated macrophages were PGE2, IL-10 and NO. (9). The removal of cytokines, eicosanoids and TNF-α from LPS-treated macrophage supernatants using Cycloheximide, Dexamethasone and an MMPI respectively, resulted in the inability of these supernatants to restore macrophage-depleted lymphocyte responses to mitogen. (10). rIL-1β and rTNF-α are co-mitogenic factors, as macrophage-depleted lymphocytes incubated with rIL-1β and rTNF-α can respond to mitogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Multiple low doses of streptozotocin (MSZ) treatment successfully induced diabetes in male TO, MFI and HO lean mice. In contrast however, BALB/c mice failed to develop persistent hyperglycaemia. Single streptozotocin (SSZ) treatment also produced diabetes in TO mice. SSZ treatment however, produced severe weight loss and atrophy of the lymphoid organs. MSZ treatment on the other hand, was not cytotoxic towards lymphoid organs and, whilst there was no loss of body weight, growth rates were reduced in MSZ treated mice. 2. Following sheep red blood cell (SRBC) immunisation of MSZ-treated mice, haemagglutination titres, and numbers of antigen reactive cells and plaque forming cells were all significantly lower than control values. 3. In vitro proliferation of spleen cells in response to phytohaemagglutinin (PHA) and conconavalin A (ConA) was found to be significantly depressed in MSZ treated mice. However, T-lymphocyte responses were intact when the mice were not overtly hyperglycaemic. In contrast, however, T cell independent responses to lipopolysaccharide (LPS) were generally intact throughout the study period. 4. Cell mediated immunity, as assessed by measurements of delayed (Type IV) hypersensitivity, was also depressed in MSZ treated mice. This suppression could be reversed by insulin therapy. 5. Both natural killer cell activity and antibody dependent cell mediated cytotoxicity were found to be significantly increased in MSZ treated mice. 6. Histological examination of the pancreas showed the presence of insulitis, in MSZ treated mice, and cytotoxic effector cells against obese mice islet cells (as assessed by 51Cr release) and HIT-T15 cells (as assessed by insulin secretion) were found to be significantly increased. Furthermore, these effector cells were also found to show increased proliferation in the presence of homogenates prepared from HIT-T15 cells. Examination of the Sera from MSZ treated mice showed that islet cell surface antibodies were present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metabolic function of the glyoxalase system was investigated in (a) the differentiation and proliferation of human tumour cells in vitro, (b) the cell-free assembly of microtubules and (c) in the red blood cells during hyperglycaemia associated with Diabetes Mellitus. Chemically-induced differentiation of human promyelocytic HL60 leukaemia cells to neutrophils, and K562 erythroleukaemia cells, was accompanied by a decrease and an increase in the activity of glyoxalase I, respectively. Growth-arrest of Burkitt's lymphoma Raji cells and GM892 lymphoblastoid cells was accompanied by an increase and a decrease in the activity of glyoxalase I respectively. However, differentiation and growth arrest generally proceeded with an increase in the activity of glyoxalase II. Glyoxalase I activity did not consistently correlate with cell differentiation or proliferation status; hence, it is unlikely that glyoxalase I activity is either an indicator or a regulator of cell differentiation or proliferation. Conversely, glyoxalase II activity consistently increased during cell differentiation and growth-arrest and may be both an indicator and regulator of cell differentiation or proliferation. This may be related to the control of cellular microtubule assembly. S-D-Lactoylglutathione potentiated the cell-free, GTP-promoted assembly of microtubules. The effect was dose-related and was inhibited by glyoxalase II. During assembly, S-D-lactoylglutathione was consumed. This suggests that the glyoxalase system, through the influence of S-D-lactoylglutathione, may regulate the assembly of microtubules in cellular systems The whole blood concentrations of methylglyoxal and S-D-lactoylglutathione were increased in Diabetes Mellitus. There was no significant difference between red blood cell glyoxalase activities in diabetics, compared to healthy controls. However, insulin-dependent diabetic patients with retinopathy had a significantly higher glyoxalase I activity and a lower glyoxalase II activity, than patients without retinopathy. Diabetic retinopathy correlated with high glyoxalase I activity and low glyoxalase II activity and suggests the glyoxalase system may be involved in the development of diabetic complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is caused by defects in the signalling mechanisms that govern cell proliferation and apoptosis. It is well known that calcium-dependent signalling pathways play a critical role in cell regulation. A tight control of calcium homeostasis by transporters and channel proteins is required to assure a proper functioning of the calcium-sensitive signal transduction pathways that regulate cell growth and apoptosis. The Plasma Membrane Calcium ATPase 2 (PMCA2) has been recently identified as a negative regulator of apoptosis that can play a significant role in cancer progression by conferring cells resistance to apoptosis. We have previously reported an inhibitory interaction between PMCA2 and the calcium-activated signalling molecule calcineurin in breast cancer cells. Here we demonstrate that disruption of the PMCA2/calcineurin interaction in a variety of human breast cancer cells results in activation of the calcineurin/NFAT pathway, up-regulation in the expression of the pro-apoptotic protein Fas Ligand, and in a concomitant loss of cell viability. Reduction in cell viability is the consequence of an increase in cell apoptosis. Impairment of the PMCA2/calcineurin interaction enhances paclitaxel-mediated cytotoxicity of breast tumoral cells. Our results suggest that therapeutic modulation of the PMCA2/calcineurin interaction might have important clinical applications to improve current treatments for breast cancer patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visfatin is an adipogenic adipokine with increased levels in obesity, properties common to leptin. Thus, leptin may modulate visfatin production in adipose tissue (AT). Therefore, we investigated the effects of leptin on visfatin levels in 3T3-L1 adipocytes and human/murine AT, with or without a leptin antagonist. The potential signaling pathways and mechanisms regulating visfatin production in AT was also studied. Real-time RT-PCR and Western blotting were used to assess the relative mRNA and protein expression of visfatin. ELISA was performed to measure visfatin levels in conditioned media of AT explants, and small interfering RNA technology was used to reduce leptin receptor expression. Leptin significantly (P<0.01) increased visfatin levels in human and murine AT with a maximal response at leptin 10(-9) M, returning to baseline at leptin 10(-7) M. Importantly, ip leptin administration to C57BL/6 ob/ob mice further supported leptin-induced visfatin protein production in omental AT (P<0.05). Additionally, soluble leptin receptor levels rose with concentration dependency to a maximal response at leptin 10(-7) M (P<0.01). The use of a leptin antagonist negated the induction of visfatin and soluble leptin receptor by leptin. Furthermore, leptin-induced visfatin production was significantly decreased in the presence of MAPK and phosphatidylinositol 3-kinase inhibitors. Also, when the leptin eceptor gene was knocked down using small interfering RNA, eptin-induced visfatin expression was significantly decreased. Thus, leptin increases visfatin production in AT in vivo and ex vivo via pathways involving MAPK and phosphatidylinositol 3-kinase signaling. The pleiotropic effects of leptin may be partially mediated by visfatin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Celiac disease is an autoimmune-mediated enteropathy characterized by adaptive and innate immune responses to dietary gluten in wheat, rye and barley in genetically susceptible individuals. Gluten-derived gliadin peptides are deamidated by transglutaminase 2 (TG2), leading to an immune response in the small-intestinal mucosa. TG2 inhibitors have therefore been suggested as putative drugs for celiac disease. In this proof-of-concept study we investigated whether two TG2 inhibitors, cell-impermeable R281 and cell-permeable R283, can prevent the toxic effects of gliadin in vitro and ex vivo. Methods Intestinal epithelial Caco-2 cells were treated with peptic-tryptic-digested gliadin (PT-gliadin) with or without TG2 inhibitors and thereafter direct toxic effects (transepithelial resistance, cytoskeletal rearrangement, junction protein expression and phoshorylation of extracellular-signal-regulated kinase 1/2) were determined. In an organ culture of celiacpatient- derived small-intestinal biopsies we measured secretion of TG2-autoantibodies into the culture medium and the densities of CD25- and interleukin (IL) 15-positive cells, forkhead box P3 (FOXP3)-positive regulatory Tcells (Tregs) and Ki-67- positive proliferating crypt cells. Results Both TG2 inhibitors evinced protective effects against gliadin-induced detrimental effects in Caco-2 cells but the cellimpermeableR281seemedslightlymorepotent. Inaddition,TG2 inhibitor R281 modified the gluten-induced increase in CD25- and IL15-positive cells,Tregs and crypt cell proliferation, but had no effect on antibody secretion in celiac-patient-derived biopsies. Conclusions Our results suggest that TG2 inhibitors are able to reduce certain gliadin-induced effects related to responses in vitro and ex vivo. © Springer Science+Business Media, LLC 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive oxygen species including H2O2 activate an array of intracellular signalling cascades that are closely associated with cell death and cell survival pathways. The human neuroblastoma SH-SY5Y cell line is widely used as model cell system for studying neuronal cell death induced by oxidative stress. However, at present very little is known about the signalling pathways activated by H2O2 in SH-SY5Y cells. Therefore, in this study we have investigated the effect of H2(O2 on extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase B (PKB) activation in undifferentiated and differentiated SH-SY5Y cells. H2O2 stimulated time and concentration increases in ERK1/2, JNK and PKB phosphorylation in undifferentiated and differentiated SH-SY5Y cells. No increases in p38 MAPK phosphorylation were observed following H2O2 treatment. The phosphatidylinositol 3-kinase (PI-3K) inhibitors wortmannin and LY 294002 ((2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) inhibited H2O2-induced increases in ERK1/2 and PKB phosphorylation. Furthermore, H2O2-mediated increases in ERK1/2 activation were sensitive to the MAPK kinase 1 (MEK1) inhibitor PD 98059 (2'-amino-3'-methoxyflavone), whereas JNK responses were blocked by the JNK inhibitor SP 600125 (anthra[1-9-cd]pyrazol-6(2H)-one). Treatment of SH-SY5Y cells with H2O2 (1 mM; 16 h) significantly increased the release of lactate dehydrogenase (LDH) into the culture medium indicative of a decrease in cell viability. Pre-treatment with wortmannin, SP 600125 or SB 203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole; p38 MAPK inhibitor) had no effect on H2O2-induced LDH release from undifferentiated or differentiated SH-SY5Y cells. In contrast, PD 98059 and LY 294002 significantly decreased H2O2-induced cell death in both undifferentiated and differentiated SH-SY5Y cells. In conclusion, we have shown that H2O2 stimulates robust increases in ERK1/2, JNK and PKB in undifferentiated and differentiated SH-SY5Y cells. Furthermore, the data presented clearly suggest that inhibition of the ERK1/2 pathway protects SH-SY5Y cells from H2O2-induced cell death.