24 resultados para human amnion epithelial cell transplantation

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic systemic immunosuppression in cell replacement therapy restricts its clinical application. This study sought to explore the potential of cell-based immune modulation as an alternative to immunosuppressive drug therapy in the context of pancreatic islet transplantation. Human amniotic epithelial cells (AEC) possess innate anti-inflammatory and immunosuppressive properties that were utilized to create localized immune privilege in an in vitro islet cell culture system. Cellular constructs composed of human islets and AEC (islet/AEC) were bioengineered under defined rotational cell culture conditions. Insulin secretory capacity was validated by glucose challenge and immunomodulatory potential characterized using a peripheral blood lymphocyte (PBL) proliferation assay. Results were compared to control constructs composed of islets or AEC cultured alone. Studies employing AEC-conditioned medium examined the role of soluble factors, and fluorescence immunocytochemistry was used to identify putative mediators of the immunosuppressive response in isolated AEC monocultures. Sustained, physiologically appropriate insulin secretion was observed in both islets and islet/AEC constructs. Activation of resting PBL proliferation occurred on exposure to human islets alone but this response was significantly (p <0.05) attenuated by the presence of AEC and AEC-conditioned medium. Mitogen (phytohaemagglutinin, 5 µg/ml)-induced PBL proliferation was sustained on contact with isolated islets but abrogated by AEC, conditioned medium, and the islet/AEC constructs. Immunocytochemical analysis of AEC monocultures identified a subpopulation of cells that expressed the proapoptosis protein Fas ligand. This study demonstrates that human islet/AEC constructs exhibit localized immunosuppressive properties with no impairment of ß-cell function. The data suggest that transplanted islets may benefit from the immune privilege status conferred on them as a consequence of their close proximity to human AEC. Such an approach may reduce the need for chronic systemic immunosuppression, thus making islet transplantation a more attractive treatment option for the management of insulin-dependent diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The establishment and maintenance of epithelial cell polarity is essential throughout the development and adult life of all multicellular organisms. A key player in maintaining epithelial polarity is Crumbs (Crb), an evolutionarily conserved type-I transmembrane protein initially identified in Drosophila. Correct Crb levels and apical localization are imperative for its function. However, as is the case for many polarized proteins, the mechanisms of its trafficking and strict apical localization are poorly understood. To address these questions, we developed a liposome-based assay to identify trafficking coats and interaction partners of Crb in a native-like environment. Thereby, we demonstrated that Crb is a cargo for Retromer, a trafficking complex required for transport from endosomes to the trans-Golgi-network. The functional importance of this interaction was revealed by studies in Drosophila epithelia, which established Retromer as a novel regulator of epithelial cell polarity and verified the vast potential of this technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolutionarily conserved apical determinant Crumbs (Crb) is essential for maintaining apicobasal polarity and integrity of many epithelial tissues [1]. Crb levels are crucial for cell polarity and homeostasis, yet strikingly little is known about its trafficking or the mechanism of its apical localization. Using a newly established, liposome-based system described here, we determined Crb to be an interaction partner and cargo of the retromer complex. Retromer is essential for the retrograde transport of numerous transmembrane proteins from endosomes to the trans-Golgi network (TGN) and is conserved between plants, fungi, and animals [2]. We show that loss of retromer function results in a substantial reduction of Crb in Drosophila larvae, wing discs, and the follicle epithelium. Moreover, loss of retromer phenocopies loss of crb by preventing apical localization of key polarity molecules, such as atypical protein kinase C (aPKC) and Par6 in the follicular epithelium, an effect that can be rescued by overexpression of Crb. Additionally, loss of retromer results in multilayering of the follicular epithelium, indicating that epithelial integrity is severely compromised. Our data reveal a mechanism for Crb trafficking by retromer that is vital for maintaining Crb levels and localization. We also show a novel function for retromer in maintaining epithelial cell polarity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regenerative medicine technologies have the potential to revolutionise human healthcare. However, whilst science has revealed the potential, and early products have shown the power of such therapies, there is now a need for the long-term supply of human stem cells in sufficient numbers to create reproducible and cost effective therapeutic products. The industrial platforms to be developed for human cell culture are in some ways analogous to those already developed for biopharmaceutical production using mammalian cells at large scales. However, there are a number of unique challenges that need to be addressed, largely because the quality of the cell is paramount, rather than the proteins that they express. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface epithelial cells of the stomach represent a major component of the gastric barrier. A cell culture model of the gastric epithelial cell surface would prove useful for biopharmaceutical screening of new chemical entities and dosage forms. Primary cultures of guinea pig gastric mucous epithelial cells were grown on filter inserts (Transwells®) for 3 days. Tight-junction formation, assessed by transepithelial electrical resistance (TEER) and permeability of mannitol and fluorescein, was enhanced when collagen IV rather than collagen I was used to coat the polycarbonate filter. TEER for cells grown on collagen IV was close to that obtained with intact guinea pig gastric epithelium in vitro. Differentiation was assessed by incorporation of [ 3H]glucosamine into glycoprotein and by activity of NADPH oxidase, which produces superoxide. Both of these measures were greater for cells grown on filters coated with collagen I than for cells grown on plastic culture plates, but no major difference was found between cells grown on collagens I and IV. The proportion of cells, which stained positively for mucin with periodic acid Schiff reagent, was greater than 95% for all culture conditions. Monolayers grown on membranes coated with collagen IV exhibited apically polarized secretion of mucin and superoxide, and were resistant to acidification of the apical medium to pH 3.0 for 30 min. A screen of nonsteroidal anti-inflammatory drugs revealed a novel effect of diclofenac and niflumic acid in reversibly reducing permeability by the paracellular route. In conclusion, the mucous cell preparation grown on collagen IV represents a good model of the gastric surface epithelium suitable for screening procedures. © 2005 The Society for Biomolecular Screening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human mesenchymal stem cell (hMSC) therapies have the potential to revolutionise the healthcare industry and replicate the success of the therapeutic protein industry; however, for this to be achieved there is a need to apply key bioprocessing engineering principles and adopt a quantitative approach for large-scale reproducible hMSC bioprocess development. Here we provide a quantitative analysis of the changes in concentration of glucose, lactate and ammonium with time during hMSC monolayer culture over 4 passages, under 100% and 20% dissolved oxgen (dO2), where either a 100%, 50% or 0% growth medium exchange was performed after 72h in culture. Yield coefficients, specific growth rates (h-1) and doubling times (h) were calculated for all cases. The 100% dO2 flasks outperformed the 20% dO2 flasks with respect to cumulative cell number, with the latter consuming more glucose and producing more lactate and ammonium. Furthermore, the 100% and 50% medium exchange conditions resulted in similar cumulative cell numbers, whilst the 0% conditions were significantly lower. Cell immunophenotype and multipotency were not affected by the experimental culture conditions. This study demonstrates the importance of determining optimal culture conditions for hMSC expansion and highlights a potential cost savings from only making a 50% medium exchange, which may prove significant for large-scale bioprocessing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background aims: The cost-effective production of human mesenchymal stromal cells (hMSCs) for off-the-shelf and patient specific therapies will require an increasing focus on improving product yield and driving manufacturing consistency. Methods: Bone marrow-derived hMSCs (BM-hMSCs) from two donors were expanded for 36 days in monolayer with medium supplemented with either fetal bovine serum (FBS) or PRIME-XV serum-free medium (SFM). Cells were assessed throughout culture for proliferation, mean cell diameter, colony-forming potential, osteogenic potential, gene expression and metabolites. Results: Expansion of BM-hMSCs in PRIME-XV SFM resulted in a significantly higher growth rate (P < 0.001) and increased consistency between donors compared with FBS-based culture. FBS-based culture showed an inter-batch production range of 0.9 and 5 days per dose compared with 0.5 and 0.6 days in SFM for each BM-hMSC donor line. The consistency between donors was also improved by the use of PRIME-XV SFM, with a production range of 0.9 days compared with 19.4 days in FBS-based culture. Mean cell diameter has also been demonstrated as a process metric for BM-hMSC growth rate and senescence through a correlation (R2 = 0.8705) across all conditions. PRIME-XV SFM has also shown increased consistency in BM-hMSC characteristics such as per cell metabolite utilization, in vitro colony-forming potential and osteogenic potential despite the higher number of population doublings. Conclusions: We have increased the yield and consistency of BM-hMSC expansion between donors, demonstrating a level of control over the product, which has the potential to increase the cost-effectiveness and reduce the risk in these manufacturing processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cigarette smoke is a complex mixture of more than 4000 hazardous chemicals including the carcinogenic benzopyrenes. Nicotine, the most potent component of tobacco, is responsible for the addictive nature of cigarettes and is a major component of e-cigarette cartridges. Our study aims to investigate the toxicity of nicotine with special emphasis on the replacement of animals. Furthermore, we intend to study the effect of nicotine, cigarette smoke and e-cigarette vapours on human airways. In our current work, the BEAS 2B human bronchial epithelial cell line was used to analyse the effect of nicotine in isolation, on cell viability. Concentrations of nicotine from 1.1µM to 75µM were added to 5x105 cells per well in a 96 well plate and incubated for 24 hours. Cell titre blue results showed that all the nicotine treated cells were more metabolically active than the control wells (cells alone). These data indicate that, under these conditions, nicotine does not affect cell viability and in fact, suggests that there is a stimulatory effect of nicotine on metabolism. We are now furthering this finding by investigating the pro-inflammatory response of these cells to nicotine by measuring cytokine secretion via ELISA. Further work includes analysing nicotine exposure at different time points and on other epithelial cells lines like Calu-3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost-effective manufacturing processes. Microcarriers enable the culture of anchorage-dependent cells in stirred-tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We systematically evaluated 13 microcarriers for human bone marrow-derived MSC (hBM-MSCs) expansion from three donors to establish a reproducible and transferable methodology for microcarrier selection. Monolayer studies demonstrated input cell line variability with respect to growth kinetics and metabolite flux. HBM-MSC1 underwent more cumulative population doublings over three passages in comparison to hBM-MSC2 and hBM-MSC3. In 100 mL spinner flasks, agitated conditions were significantly better than static conditions, irrespective of donor, and relative microcarrier performance was identical where the same microcarriers outperformed others with respect to growth kinetics and metabolite flux. Relative growth kinetics between donor cells on the microcarriers were the same as the monolayer study. Plastic microcarriers were selected as the optimal microcarrier for hBM-MSC expansion. HBM-MSCs were successfully harvested and characterised, demonstrating hBM-MSC immunophenotype and differentiation capacity. This approach provides a systematic method for microcarrier selection, and the findings identify potentially significant bioprocessing implications for microcarrier-based allogeneic cell therapy manufacture. Large-scale production of human bone-marrow derived mesenchymal stem cells (hBM-MSCs) requires expansion on microcarriers in agitated systems. This study demonstrates the importance of microcarrier selection and presents a systematic methodology for selection of an optimal microcarrier. The study also highlights the impact of an agitated culture environment in comparison to a static system, resulting in a significantly higher hBM-MSC yield under agitated conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The direction of cytokine secretion from polarized cells determines the cytokine's cellular targets. Leukemia inhibitory factor LIF) belongs to the interleukin-6 IL-6) family of cytokines and signals through LIFR/gp130. Three factors which may regulate the direction of LIF secretion were studied: the site of stimulation, signal peptides, and expression levels. Stimulation with IL-1 beta is known to promote IL-6 secretion from the stimulated membrane apical or basolateral) in the human intestinal epithelial cell line Caco-2. Since LIF is related to IL-6, LIF secretion was also tested in Caco-2 following IL-1 beta stimulation. Signal peptides may influence the trafficking of LIF. Two isoforms of murine LIF, LIF-M and LIF-D, encode different signal peptides which have been associated with different locations of the mature protein in fibroblasts. To determine the effect of the signal peptides on LIF secretion, secretion levels were compared in Madin-Darby canine kidney MDCK) clones which expressed murine LIF-M or LIF-D or human LIF under the control of an inducible promoter. Low and high levels of LIF expression were also compared since saturation of the apical or basolateral route would reveal specific transporters for LIF. Results: When Caco-2 was grown on permeable supports, LIF was secreted constitutively with around 40% secreted into the apical chamber. Stimulation with IL-1 beta increased LIF production. After treating the apical surface with IL-1 beta, the percentage secreted apically remained similar to the untreated, whereas, when the cells were stimulated at the basolateral surface only 20% was secreted apically. In MDCK cells, an endogenous LIF-like protein was detected entirely in the apical compartment. The two mLIF isoforms showed no difference in their secretion patterns in MDCK. Interestingly, about 70% of murine and human LIF was secreted apically from MDCK over a 400-fold range of expression levels within clones and a 200,000-fold range across clones. Conclusion: The site of stimulation affected the polarity of LIF secretion, while, signal peptides and expression levels did not. Exogenous LIF is transported in MDCK without readily saturated steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emerging role of the multifunctional enzyme, Transglutaminase 2 (TG2) in Cystic Fibrosis (CF) has been linked to its increased expression and intracellular transamidating activity. However, a full understanding of the molecular mechanisms involved still remains unclear despite numerous studies that have attempted to delineate this process. These mechanisms include the NFκB and TGFβ1 pathway amongst others. This study reveals for the first time that the development of fibrosis in CF is due to a TG2-driven epithelial to mesenchymal transition (EMT) via a mechanism involving the activation of the pro-fibrotic cytokine TGFβ1. Using a human ΔF508/W1282X CFTR CF mutant bronchial cell (IB3-1), its CFTR corrected “add-back” cell (C38) as well as a primary human bronchial epithelial cell (HBEC), elevated TG2 levels in the CFTR mutant IB3 cell were shown to activate latent TGFβ1 leading to increased levels found in the culture medium. This activation process was blocked by the presence of cell-permeable and impermeable TG2 inhibitors while inhibition of TGFβ1 receptors blocked TG2 expression. This demonstrates the direct link between TG2 and TGFβ1 in CF. The presence of active cell surface TG2 correlated with an increase in the expression of EMT markers, associated with the CF mutant cells, which could be blocked by the presence of TG2 inhibitors. This was mimicked using the “addback” C38 cell and the primary human bronchial epithelial cell, HBEC, where an increase in TG2 expression and activity in the presence of TGFβ1 concurred with a change in cell morphology and an elevation in EMT marker expression. Conversely, a knockdown of TG2 in the CF mutant IB3 cells illustrated that an inhibition of TG2 blocks the increase in EMT marker expression as well as causing an increase in TEER measurement. This together with an increase in the migration profile of the CF mutant IB3 cell against the “add-back” C38 cell suggests that TG2 drives a mesenchymal phenotype in CF. The involvement of TG2 activated TGFβ1 in CF was further demonstrated with an elevation/inhibition of p- SMAD 2 and 3 activation in the presence of TGFβ1/TG2 cell-permeable/impermeable inhibitors respectively. The use of a comparative airway cell model where bronchial epithelial cells were cultured at the air liquid interface (ALI) confirmed the observations in submerged culture depicting the robustness of the model and reiterated the importance of TG2 in CF. Using a CFTR corrector combined with TG2 inhibitors, this study showed that the correction and stabilisation of the ΔF508 CFTR mutation in the mutant cell forged an increase in matured CFTR copies trafficking to the apical surface by circumventing proteosomal degradation. Thus the results presented here suggests that TG2 expression is elevated in the CFTR mutant bronchial cell via a TGFβ1 driven positive feedback cycle whereby activation of latent TGFβ1 by TG2 leads in turn to an elevation in its own expression by TGFβ1. This vicious cycle then drives EMT in CF ultimately leading to lung remodelling and fibrosis. Importantly, TG2 inhibition blocks TGFβ1 activation leading to an inhibition of EMT and further blocks the emerging fibrosis, thus stabilizing and supporting the maturation, trafficking and conductance of CFTR channels at the apical surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HT-29 human colon adenocarcinoma cell line, like many epithelial cells, displays an undifferentiated phenotype when cultured on plastic substrata. Biochemical markers of differentiation, such as brush border associated enzymes and carcinoembryonic antigen were expressed at very low levels. The differentiation-inducing effects of the culture of HT-29 cells on collagen type I gels were evaluated, and were assessed by morphological appearance, brush border associated enzyme activities and the secretion of CEA. The effect that this more physiological environment had on their chemosensitivity to a panel of chemotherapeutic agents was determined, so as to indicate whether this system could be used to improve the selectivity of screening for novel anticancer agents. Initial studies were performed on HT-29 cells derived from cells seeded directly from plastic substrata onto the collagen gels (designated Non-PPC gels). Their time of exposure to the collagen was limited to the time course of a single experiment and the results suggested that a longer, more permanent exposure might produce a more pronounced differentiation. HT-29 cells were then passaged continuously on collagen gels for a minimum of 10 passages prior to experimentation (designated PPC gels). The same parameters were measured, and compared to those for the cells grown on plastic and on the non-passaged collagen gels (Non-PPC) from the original studies. Permanently passaged cells displayed a similar degree of morphological differentiation as the non-passaged cells, with both culture conditions resulting in a more pronounced differentiation than that achieved by culture on plastic. It was noted that the morphological differentiation observed was very heterogeneous, a situation also seen in xenografted tumours in vivo. The activity of alkaline phosphatase and the production of CEA was higher in the cells passaged on collagen (PPC) than the cells cultured on non-passaged collagen gel (Non-PPC) and plastic. The biochemical determination of aminopeptidase activity showed that collagen gel culture enhanced the activity in both non-passaged and passaged HT-29 cells above that of the cells cultured on plastic. However, immunocytochemical localization of aminopeptidase and sucrase-isomaltase of samples of cells grown on the various substrata for 7, 14, 21 and 28 days showed a reduction in both enzymes in the cells grown on collagen gels when compared to cells grown on plastic. The reason for the discrepancy between the two assays for aminopeptidase is at this stage unexplained. Although, there was evidence to suggest that the culture of HT-29 cells on collagen gels was capable of inducing morphological and biochemical markers of enterocytic differentiation, there were no differences in the chemosensitivity of the different cell groups to a panel of anticancer agents. Preliminary studies suggested that the ability of the cells to polarize by their culture on porous filter chambers without any exogenous ECM was sufficient to enhance HT-29 differentiation and the onset of differentiation was probably correlated with the production of ECM by the cells themselves.