9 resultados para eBook in Pharmacology

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of tic-like movements in mice has demonstrated close parallels both in characteristics and in pharmacology with the tics which occur in TS. Head-shakes and/or other tic-like behaviours occurring spontaneously or induced by the selective 5-HT2/1C agonist DOI, alpha-melanocyte stimulating hormone, adrenocorticotrophic hormone (1-39), thyrotropin releasing hormone, or RX336-M were blocked when tested with neuroleptics such as haloperidol and/or the alpha-2 adrenoceptor agonist clonidine. The selective dopamine D1 antagonists SCH23390 and SCH39166 dose-dependently blocked spontaneous and DOI head-shakes but the selective dopamine D2 antagonists sulpiride and raclopride were ineffective. The 5-HT1A receptor agonists 8-OH-DPAT, ipsapirone, gepirone, MDL 73005EF and buspirone (i.p) dose-dependently blocked DOI head-shakes, pindolol blocked the inhibitory effect of 8-OH-DPAT on DOI head-shakes. Parachlorophenylalanine blocked the inhibitory effect of 8-OH-DPAT and buspirone, suggesting that the 5-HT1A receptor involved is located presynaptically. The alpha-2 adrenoceptor antagonists yohimbine, idazoxan, 1-PP and RX811059 prevented the inhibitory effect of 8-OH-DPAT on DOI head-shakes suggesting that this 5-HT1A - 5-HT2 receptor interaction is under the modulatory control of adrenoceptors. Because kynurenine has previously been found to potentiate head-shaking, plasma kynurenine concentrations were measured in seven TS patients and were significantly higher than controls, but neopterin and biopterin were unchanged. The relationship between tic-like movements in rodents and their implications for understanding the aetiology and treatment of TS is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adrenomedullin 2 (AM2) or intermedin is a member of the calcitonin gene-related peptide (CGRP)/calcitonin family of peptides and was discovered in 2004. Unlike other members of this family, no unique receptor has yet been identified for it. It is extensively distributed throughout the body. It causes hypotension when given peripherally, but when given into the CNS, it increases blood pressure and causes sympathetic activation. It also increases prolactin release, is anti-diuretic and natriuretic and reduces food intake. Whilst its effects resemble those of AM, it is frequently more potent. Some characterization of AM2 has been done on molecularly defined receptors; the existing data suggest that it preferentially activates the AM receptor formed from calcitonin receptor-like receptor and receptor activity modifying protein 3. On this complex, its potency is generally equivalent to that of AM. There is no known receptor-activity where it is more potent than AM. In tissues and in animals it is frequently antagonised by CGRP and AM antagonists; however, situations exist in which an AM2 response is maintained even in the presence of supramaximal concentrations of these antagonists. Thus, there is a partial mismatch between the pharmacology seen in tissues and that on cloned receptors. The only AM2 antagonists are peptide fragments, and these have limited selectivity. It remains unclear as to whether novel AM2 receptors exist or whether the mismatch in pharmacology can be explained by factors such as metabolism. © 2011 The British Pharmacological Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactive oxygen species play important roles in the pathophysiology of chronic heart failure secondary to chronic left ventricular hypertrophy or myocardial infarction. Reactive oxygen species influence several components of the phenotype of the failing heart, including contractile function, interstitial fibrosis, endothelial dysfunction and myocyte hypertrophy. Recent studies implicate the production of reactive oxygen species by a family of NADPH oxidases in these effects. NADPH oxidases are activated in an isoform-specific manner by many pathophysiological stimuli and exert distinct downstream effects. Understanding NADPH oxidase activation and regulation, and their downstream effectors, could help to develop novel therapeutic targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CGRP receptor binding may be measured using homogenates of cell membranes or intact cells. Here a microcentrifugation-based assay is described that utilizes radioiodinated CGRP in displacement studies to determine the binding parameters for any ligand that interacts with CGRP receptors. A similar assay is described for binding to cultured cells. The protocols may be adapted for other radioligands or for filtration-based assays. The main problems with CGRP binding assays can usually be traced to degradation of the radioligand or displacing ligands. Also, some cell lines fail to express CGRP receptors after extensive passage. CGRP binding assays provide a rapid and easy approach for distinguishing between receptors for CGRP and related peptides such as adrenomedullin and amylin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A commentary on "Comparison of historical medical spending patterns among the BRICS and G7" by Jakovljevic, M.M. (2015). J.Med.Econ. 19, 70–76, doi:10.3111/13696998.2015.1093493

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Historically, CGRP receptors have been classified as CGRP(1) or CGRP(2) subtypes, chiefly depending on their affinity for the antagonist CGRP(8-37). It has been shown that the complex between calcitonin receptor-like receptor (CRLR or CL) and receptor activity modifying protein (RAMP) 1 provides a molecular correlate for the CGRP(1) receptor; however this does not explain the range of affinities seen for CGRP(8-37) in isolated tissues. It is suggested that these may largely be explained by a combination of methodological factors and CGRP-responsive receptors generated by CL and RAMP2 or RAMP3 and complexes of RAMPs with the calcitonin receptor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The pharmacological effects of a number of centrally acting drugs have been compared in euthyroid mice and mice made hyperthyroid by pretreatment with sodium-1-thyroxine. The potencies of two barbiturates, pentobarbitone and thiopentone - as indicated by the duration of their hypnotic actions and their acute toxicities - are increased in hyperthyroid mice. An acutely active uncoupler of phosphorylative oxidation is 2, 4-dinitrophenol, an agent which proved to be a potent hypnotic when administered intracerebrally. An attempt has been made to relate the mechanism of action of the barbiturates to the uncoupling effects of thyroxine and 2, 4-dinitrophenol. The pharmacological effects of chlorpromazine, reserpine and amphetamine-like drugs have also been studied in hyperthyroid mice. After pretreatment with thyroxine, mice show a reduced tendency to become hypothermic after chlorpromazine or reserpine; in fact, under suitable laboratory conditions these agents produce a hyperthermic effect. Yet their known depressant effects upon locomotor activity were not substantially altered. Thus it appeared that depression of locomotor activity and hypothermia are not necessarily correlated, an observation at variance with previously held opinion. These results have been discussed in the light of our knowledge of the role of the thyroid gland in thermoregulation. The actions of tremorine and its metabolite, oxotremorine, have also been examined. Hyperthyroid animals are less susceptible to both the hypothermia and tremor produced by these agents. An attempt is made to explain these observations, in view of the known mechanism of action of oxotremorine and the tremorgenic actions that thyroxine may have. A number of experimental methods have been used to study the anti-nociceptive (analgesic) effects of drugs in euthyroid and hyperthyroid mice. The sites and mechanisms of action of these drugs and the known actions of thyroxine have been discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and Purpose Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear. Experimental Approach Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants. Key Results An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide. Conclusions and Implications RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor conformational states, explaining the pharmacological preferences of calcitonin receptor-RAMP complexes. This provides novel insight into our understanding of G protein-coupled receptor-protein interaction that is likely broadly applicable for this receptor class.