17 resultados para dipeptidyl peptidase IV

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dipeptidyl peptidase IV (DPP IV) is a widely distributed physiological enzyme that can be found solubilized in blood, or membrane-anchored in tissues. DPP IV and related dipeptidase enzymes cleave a wide range of physiological peptides and have been associated with several disease processes including Crohn's disease, chronic liver disease, osteoporosis, multiple sclerosis, eating disorders, rheumatoid arthritis, cancer, and of direct relevance to this review, type 2 diabetes. Here, we place particular emphasis on two peptide substrates of DPP IV with insulin-releasing and antidiabetic actions namely, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The rationale for inhibiting DPP IV activity in type 2 diabetes is that it decreases peptide cleavage and thereby enhances endogenous incretin hormone activity. A multitude of novel DPP IV inhibitor compounds have now been developed and tested. Here we examine the information available on DPP IV and related enzymes, review recent preclinical and clinical data for DPP IV inhibitors, and assess their clinical significance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid inactivation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His7-modified analogue of GLP-1, N-pyroglutamyl-GLP-1 as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1(9-36)amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC50 values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC50-37 nM). Similarly, both analogues stimulated cAMP production with EC50 values of 16.3 and 27 nM respectively compared with GLP-1 (EC50 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P< 0.05 to P< 0.001) similar to native GLP-1. Both analogues (25 nM/kg body weight) lowered plasma glucose and increased plasma insulin levels when administered in conjunction with glucose (18 nM/kg body weight) to adult obese diabetic (ob/ob) mice. N-pyroglutamyl-GLP-1 was substantially better at lowering plasma glucose compared with the native peptide, while N-acetyl-GLP-1 was significantly more potent at stimulating insulin secretion. These studies indicate that N-terminal modification of GLP-1 results in DPP IV-resistant and biologically potent forms of GLP-1. The particularly powerful antihyperglycaemic action of N-pyroglutamyl-GLP-1 shows potential for the treatment of type 2 diabetes. © 2004 Society for Endocrinology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the incretin hormone glucagon-like peptide-1 (GLP-1) is a potent stimulator of insulin release, its rapid degradation in vivo by the enzyme dipeptidyl peptidase IV (DPP IV) greatly limits its potential for treatment of type 2 diabetes. Here, we report two novel Ala8-substituted analogues of GLP-1, (Abu8)GLP-1 and (Val8)GLP-1 which were completely resistant to inactivation by DPP IV or human plasma. (Abu8)GLP-1 and (Val8)GLP-1 exhibited moderate affinities (IC50: 4.76 and 81.1 nM, respectively) for the human GLP-1 receptor compared with native GLP-1 (IC50: 0.37 nM). (Abu8)GLP-1 and (Val8)GLP-1 dose-dependently stimulated cAMP in insulin-secreting BRIN BD11 cells with reduced potency compared with native GLP-1 (1.5- and 3.5-fold, respectively). Consistent with other mechanisms of action, the analogues showed similar, or in the case of (Val8)GLP-1 slightly impaired insulin releasing activity in BRIN BD11 cells. Using adult obese (ob/ob) mice, (Abu8 )GLP-1 had similar glucose-lowering potency to native GLP-1 whereas the action of (Val8)GLP-1 was enhanced by 37%. The in vivo insulin-releasing activities were similar. These data indicate that substitution of Ala8 in GLP-1 with Abu or Val confers resistance to DPP IV inactivation and that (Val8)GLP-1 is a particularly potent N-terminally modified GLP-1 analogue of possible use in type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the antidiabetic potential of an enzyme-resistant analog, (Val8)GLP-1. The effects of daily administration of a novel dipeptidyl peptidase IV-resistant glucagon-like peptide-1 (GLP-1) analog, (Val8)GLP-1, on glucose tolerance and pancreatic β-cell function were examined in obese-diabetic (ob/ob) mice. Acute intraperitoneal administration of (Val8)GLP-1 (6.25-25 nmol/kg) with glucose increased the insulin response and reduced the glycemic excursion in a dose-dependent manner. The effects of (Val8)GLP-1 were greater and longer lasting than native GLP-1. Once-daily subcutaneous administration of (Val8)GLP-1 (25 nmol/kg) for 21 days reduced plasma glucose concentrations, increased plasma insulin, and reduced body weight more than native GLP-1 without a significant change in daily food intake. Furthermore, (Val8)GLP-1 improved glucose tolerance, reduced the glycemic excursion after feeding, increased the plasma insulin response to glucose and feeding, and improved insulin sensitivity. These effects were consistently greater with (Val8)GLP-1 than with native GLP-1, and both peptides retained or increased their acute efficacy compared with initial administration. (Val8)GLP-1 treatment increased average islet area 1.2-fold without changing the number of islets, resulting in an increased number of larger islets. These data demonstrate that (Val8)GLP-1 is more effective and longer acting than native GLP-1 in obese-diabetic ob/ob mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) is a physiological insulin releasing peptide. We have developed two novel fatty acid derivatized GIP analogues, which bind to serum albumin and demonstrate enhanced duration of action in vivo. GIP(Lys16PAL) and GIP(Lys37PAL) were resistant to dipeptidyl peptidase IV (DPP IV) degradation. In vitro studies demonstrated that GIP analogues retained their ability to activate the GIP receptor through production of cAMP and to stimulate insulin secretion. Intraperitoneal administration of GIP analogues to obese diabetic (ob/ob) mice significantly decreased the glycemic excursion and elicited increased and prolonged insulin responses compared to native GIP. A protracted glucose-lowering effect was observed 24 h following GIP(Lys37PAL) administration. Once a day injection for 14 days decreased nonfasting glucose, improved glucose tolerance, and enhanced the insulin response to glucose. These data demonstrate that fatty acid derivatized GIP peptides represent a novel class of long-acting stable GIP analogues for therapy of type 2 diabetes. © 2006 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The multivariable and progressive natural history of type 2 diabetes limits the effectiveness of available glucose-lowering drugs. Constraints imposed by comorbidities (notably cardiovascular disease and renal impairment) and the need to avoid hypoglycaemia, weight gain, and drug interactions further complicate the treatment process. These challenges have prompted the development of new formulations and delivery methods for existing drugs alongside research into novel pharmacological entities. Advances in incretin-based therapies include a miniature implantable osmotic pump to give continuous delivery of a glucagon-like peptide-1 receptor agonist for 6-12 months and once-weekly tablets of dipeptidyl peptidase-4 inhibitors. Hybrid molecules that combine the properties of selected incretins and other peptides are at early stages of development, and proof of concept has been shown for small non-peptide molecules to activate glucagon-like peptide-1 receptors. Additional sodium-glucose co-transporter inhibitors are progressing in development as well as possible new insulin-releasing biological agents and small-molecule inhibitors of glucagon action. Adiponectin receptor agonists, selective peroxisome proliferator-activated receptor modulators, cellular glucocorticoid inhibitors, and analogues of fibroblast growth factor 21 are being considered as potential new approaches to glucose lowering. Compounds that can enhance insulin receptor and post-receptor signalling cascades or directly promote selected pathways of glucose metabolism have suggested opportunities for future treatments. However, pharmacological interventions that are able to restore normal β-cell function and β-cell mass, normalise insulin action, and fully correct glucose homoeostasis are a distant vision.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing prevalence, variable pathogenesis, progressive natural history, and complications of type 2 diabetes emphasise the urgent need for new treatment strategies. Longacting (eg, once weekly) agonists of the glucagon-like-peptide-1 receptor are advanced in development, and they improve prandial insulin secretion, reduce excess glucagon production, and promote satiety. Trials of inhibitors of dipeptidyl peptidase 4, which enhance the effect of endogenous incretin hormones, are also nearing completion. Novel approaches to glycaemic regulation include use of inhibitors of the sodium-glucose cotransporter 2, which increase renal glucose elimination, and inhibitors of 11ß-hydroxysteroid dehydrogenase 1, which reduce the glucocorticoid effects in liver and fat. Insulin-releasing glucokinase activators and pancreatic-G-protein-coupled fatty-acid-receptor agonists, glucagon-receptor antagonists, and metabolic inhibitors of hepatic glucose output are being assessed. Early proof of principle has been shown for compounds that enhance and partly mimic insulin action and replicate some effects of bariatric surgery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many patients with type 2 diabetes are obese (diabesity), and the two conditions together impose a particularly complex therapeutic challenge. Several differently acting agents are often required at the same time, encouraging development of more single-tablet combinations. Longer-acting (once daily and once weekly) injected agonists of glucagon-like peptide-1 are due to provide additional options to stimulate insulin secretion with weight loss and minimal risk of hypoglycemia. Further, dipeptidyl peptidase-4 inhibitors ("weight-neutral" insulinotropic agents) are also expected. Sodium-glucose cotransporter 2 inhibitors offer a new option to reduce hyperglycemia and facilitate weight loss by increasing the elimination of glucose in the urine. Selective peroxisome proliferator-activated receptor modulators are being studied to produce compounds with desired effects. Many other agents with antidiabetic and antiobesity activity are progressing in clinical development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Type 2 diabetes is typically associated with insulin resistance and dysfunction of insulin-secreting pancreatic beta-cells. Addressing these defects often requires therapy with a combination of differently acting antidiabetic agents. A potential novel combination in development brings together the dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin with the thiazolidinedione pioglitazone into a fixed-dose single-tablet combination. The former component acts mainly to increase prandial insulin secretion; the latter improves insulin sensitivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence of obesity with type 2 diabetes increases morbidity and mortality from each condition. Excess adiposity accentuates insulin resistance and complicates the treatment of type 2 diabetes. Glucagon-like peptide 1 receptor agonists promote weight loss, whereas metformin, dipeptidyl peptidase 4 inhibitors, and a glucosidase inhibitors are typically weight neutral. The anabolic effects of increased insulin secretion and action restrict the benefits of treatment in obese patients. New treatments should ideally reduce hyperglycaemia and excess adiposity. Potential new treatments include analogues of intestinal and adipocyte hormones, inhibitors of renal glucose reabsorption and cellular glucocorticoid activation, and activators of cellular energy production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Depending on age, duration of diabetes and glycaemic control, 20-40% of patients with type 2 diabetes will incur a moderate or severe deterioration of renal function. This will impact the choice of blood glucose-lowering therapy and require more frequent monitoring of both renal function and glycaemic control. Moderate renal impairment (glomerular filtration rate 30-<60 ml/min) requires consideration of dose reduction or treatment cessation for metformin, glucagon-like peptide-1 receptor agonists, some sulphonylureas and some dipeptidyl peptidase-4 inhibitors. At lower rates of glomerular filtration down to about 15 ml/min it may be appropriate to use a meglitinide, pioglitazone or certain sulphonylureas with careful consideration of dose and co-morbidities. Dipeptidyl peptidase-4 inhibitors can be used at reduced dose in patients with very low rates of glomerular filtration, and linagliptin can be used without dose reduction, and has been used in patients on dialysis. Insulin can be used at any stage of renal impairment, but the regimen and the dose must be suitably adjusted and accompanied by adequate monitoring. © The Author(s), 2012.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The enteroinsular axis (EIA) constitutes a physiological signalling system whereby intestinal endocrine cells secrete incretin hormones following feeding that potentiate insulin secretion and contribute to the regulation of blood glucose homeostasis. The two key hormones responsible are named glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Recent years have witnessed sustained development of antidiabetic therapies that exploit the EIA. Current clinical compounds divide neatly into two classes. One concerns analogues or mimetics of GLP-1, such as exenatide (Byetta) or liraglutide (NN2211). The other group comprises the gliptins (e.g. sitagliptin and vildagliptin) which boost endogenous incretin activity by inhibiting the enzyme dipeptidyl peptidase 4 (DPP 4) that degrades both GLP-1 and GIP. Ongoing research indicates that further incretin and gliptin compounds will become available for clinical use in the near future, offering comparable or improved efficacy. For incretin analogues there is the prospect of prolonged duration of action and alternative routes of administration. This review focuses on recent advances in pre-clinical research and their translation into clinical studies to provide future therapies for type 2 diabetes targeting the EIA. © 2009 Bentham Science Publishers Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background - To assess potentially elevated cardiovascular risk related to new antihyperglycemic drugs in patients with type 2 diabetes, regulatory agencies require a comprehensive evaluation of the cardiovascular safety profile of new antidiabetic therapies. We assessed cardiovascular outcomes with alogliptin, a new inhibitor of dipeptidyl peptidase 4 (DPP-4), as compared with placebo in patients with type 2 diabetes who had had a recent acute coronary syndrome. Methods - We randomly assigned patients with type 2 diabetes and either an acute myocardial infarction or unstable angina requiring hospitalization within the previous 15 to 90 days to receive alogliptin or placebo in addition to existing antihyperglycemic and cardiovascular drug therapy. The study design was a double-blind, noninferiority trial with a prespecified noninferiority margin of 1.3 for the hazard ratio for the primary end point of a composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. Results - A total of 5380 patients underwent randomization and were followed for up to 40 months (median, 18 months). A primary end-point event occurred in 305 patients assigned to alogliptin (11.3%) and in 316 patients assigned to placebo (11.8%) (hazard ratio, 0.96; upper boundary of the one-sided repeated confidence interval, 1.16; P<0.001 for noninferiority). Glycated hemoglobin levels were significantly lower with alogliptin than with placebo (mean difference, -0.36 percentage points; P<0.001). Incidences of hypoglycemia, cancer, pancreatitis, and initiation of dialysis were similar with alogliptin and placebo. Conclusions - Among patients with type 2 diabetes who had had a recent acute coronary syndrome, the rates of major adverse cardiovascular events were not increased with the DPP-4 inhibitor alogliptin as compared with placebo. (Funded by Takeda Development Center Americas; EXAMINE ClinicalTrials.gov number, NCT00968708.)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oral therapy for type 2 diabetes mellitus, when used appropriately, can safely assist patients to achieve glycaemic targets in the short to medium term. However, the progressive nature of type 2 diabetes usually requires a combination of two or more oral agents in the longer term, often as a prelude to insulin therapy. Issues of safety and tolerability, notably weight gain, often limit the optimal application of anti-diabetic drugs such as sulforylureas and thiazolidinediones. Moreover, the impact of different drugs, even within a single class, on the risk of long-term vascular complications has come under scrutiny. For example, recent publication of evidence suggesting potential detrimental effects of rosiglitazone on myocardial events generated a heated debate and led to a reduction in use of this drug. In contrast, current evidence supports the view that pioglitazone has vasculoprotective properties. Both drugs are contraindicated in patients who are at risk of heart failure. An additional recently identified safety concern is an increased risk of fractures, especially in postmenopausal women. Several new drugs with glucose-lowering efficacy that may offer certain advantages have recently become available. These include (i) injectable glucagonlike peptide-1 (GLP-1) receptor agonists and oral dipeptidyl peptidase-4 (DPP-4) inhibitors; (ii) the amylin analogue pramlintide; and (iii) selective cannabinoid receptor-1 (CB1) antagonists. GLP-1 receptor agonists, such as exenatide, stimulate nutrient-induced insulin secretion and reduce inappropriate glucagon secretion while delaying gastric emptying and reducing appetite. These agents offer a low risk of hypoglycaemia combined with sustained weight loss. The DPP-4 inhibitors sitagliptin and vildagliptin are generally weight neutral, with less marked gastrointestinal adverse effects than the GLP-1 receptor agonists. Potential benefits of GLP-1 receptor stimulation on P cell neogenesis are under investigation. Pancreatitis has been reported in exenatide-treated patients. Pramlintide, an injected peptide used in combination with insulin, can reduce insulin dose and bodyweight. The CB1 receptor antagonist rimonabant promotes weight loss and has favourable effects on aspects of the metabolic syndrome, including the hyperglycaemia of type 2 diabetes. However, in 2007 the US FDA declined approval of rimonabant, requiring more data on adverse effects, notably depression. The future of dual peroxisome proliferator-activated receptor-alpha/gamma agonists, or glitazars, is presently uncertain following concerns about their safety. In conclusion, several new classes of drugs have recently become available in some countries that offer new options for treating type 2 diabetes. Beneficial or neutral effects on bodyweight are an attractive feature of the new drugs. However, the higher cost of these agents, coupled with an absence of long-term safety and clinical outcome data, need to be taken into consideration by clinicians and healthcare organizations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: This 12-week study assessed the efficacy and tolerability of imeglimin as add-on therapy to the dipeptidyl peptidase-4 inhibitor sitagliptin in patients with type 2 diabetes inadequately controlled with sitagliptin monotherapy. RESEARCH DESIGN AND METHODS: In a multicenter, randomized, double-blind, placebo-controlled, parallel-group study, imeglimin (1,500 mg b.i.d.) or placebo was added to sitagliptin (100 mg q.d.) over 12weeks in 170 patientswith type 2 diabetes (mean age 56.8 years; BMI 32.2 kg/m2) that was inadequately controlled with sitagliptin alone (A1C ≥7.5%) during a 12-week run-in period. The primary ef ficacy end point was the change in A1C from baseline versus placebo; secondary end points included corresponding changes in fasting plasma glucose (FPG) levels, strati fication by baseline A1C, and percentage of A1C responders. RESULTS: Imeglimin reduced A1C levels (least-squares mean difference) from baseline (8.5%) by 0.60% compared with an increase of 0.12% with placebo (between-group difference 0.72%, P < 0.001). The corresponding changes in FPG were -0.93 mmol/L with imeglimin vs. -0.11 mmol/L with placebo (P = 0.014). With imeglimin, the A1C level decreased by ≥0.5% in 54.3% of subjects vs. 21.6% with placebo (P < 0.001), and 19.8%of subjects receiving imeglimin achieved a decrease in A1C level of ≤7% compared with subjects receiving placebo (1.1%) (P = 0.004). Imeglimin was generally well tolerated, with a safety pro file comparable to placebo and no related treatment-emergent adverse events. CONCLUSIONS: Imeglimin demonstrated incremental efficacy benefits as add-on therapy to sitagliptin, with comparable tolerability to placebo, highlighting the potential for imeglimin to complement other oral antihyperglycemic therapies. © 2014 by the American Diabetes Association.