10 resultados para detoxification

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of an innovative technology for the pyrolytic conversion of brominated phenols in a reductive medium aimed at product recovery for commercial use is discussed in this paper. Brominated phenols are toxic products, which contaminate pyrolysis oil of wastes from electronic and electrical equipment (WEEE). The pyrolysis experiments were carried out with 2,6-dibromophenol, tetrabromobisphenol A, WEEE pyrolysis oil and polypropylene or polyethylene in encapsulated ampoules under inert atmosphere in quasi-isothermal conditions (300-400 °C) with a different residence time (10-30 min). Optimal conditions were found to be the use of polypropylene at 350 °C with a residence time of 20 min. The main pyrolysis products were identified as HBr and phenol. A radical debromination mechanism for the pyrolytic destruction of brominated phenols is suggested. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipid-mobilising factor (LMF) is produced by cachexia-inducing tumours and is involved in the degradation of adipose tissue, with increased oxidation of the released fatty acids through an induction of uncoupling protein (UCP) expression. Since UCP-2 is thought to be involved in the detoxification of free radicals if LMF induced UCP-2 expression in tumour cells, it might attenuate free radical toxicity. As a model system we have used MAC13 tumour cells, which do not produce LMF. Addition of LMF caused a concentration-dependent increase in UCP-2 expression, as determined by immunoblotting. This effect was attenuated by the β3 antagonist SR59230A, suggesting that it was mediated through a β3 adrenoreceptor. Co-incubation of LMF with MAC13 cells reduced the growth-inhibitory effects of bleomycin, paraquat and hydrogen peroxide, known to be free radical generators, but not chlorambucil, an alkylating agent. There was no effect of LMF alone on cellular proliferation. These results indicate that LMF antagonises the antiproliferative effect of agents working through a free radical mechanism, and may partly explain the unresponsiveness to the chemotherapy of cachexia-inducing tumours. © 2004 Cancer Research UK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many dietary factors have been associated with a decreased risk of developing cancer. One potential mechanism by which these factors, chemopreventors, protect against cancer may be via alteration of carcinogen metabolism. The broccoli constituent sulforaphane (1-isothiocyanate-4-methylsulinylbutane) (CH3-S0-(CH2)4-NCS) has been isolated as a potential inducer of phase II detoxification enzymes and also protects rodents against 9,10-dimethyl-1,2-benz[aJanthracene-induced mammary tumours. The ability of sulforaphane to also modulate phase I activation enzymes (cytochrome P450) (CYP450) was studied here. Sulforaphane was synthesised with an overall yield of 15%, essentially via 1-methylsulfinylphthalimidobutane, which was oxidised to the sulfoxide moiety. Deprotective removal of phthalimide yielded the amine, which was converted into sulforaphane by reaction with N,N'-thionocarbonyldiimidazole. Purity (95 %) was checked by 1H-NMR,13C-NMR and infrared and mass spectrometry.Sulforaphane was a competitive inhibitor of CYP2E1 in acetone-induced Sprague-Dawley rat microsomes (Ki 37.9 ± 4.5μM), as measured by the p-nitrophenol hydroxylase assay. Ethoxyresorufin deethylase activity (EROD), a measurement of CYP1A activity, was also inhibited by sulforaphane (100μM) but was not competitive, and a preincubation time-dependence was observed. In view of these results, the capacity of sulforaphane to inhibit N-nitrosodimethylamine (NDMA)-induced genotoxicity (CYP2E1-mediated) was studied using mouse liver activation systems. Sulforaphane (>0.8μM) inhibited the mutagenicity of NDMA (4.4 mg/plate) in Salmonella typhimurium strain TA100 after pre-incubation for 45 min with acetone-induced liver 9000 g supernatants from Balb/c mice. Unscheduled DNA synthesis induced by NDMA (33μ5 M) in mouse hepatocytes was also reduced by sulforaphane in a concentration-dependent manner (0.064-20μM). Sulforaphane was not genotoxic itself in any of these systems and cytotoxic only at high concentrations (>0.5 mM and > 40μM respectively). The ability of sulforaphane to modulate the orthologous human enzymes was studied using a human epithelial liver cell line (THLE) expressing individual human CYP450 isoenzymes. Using the Comet assay (a measurement of DNA strand breakage under alkaline conditions), NDMA (0.01-1μg/ml) and IQ (0.1-10μg/ml) were used to produce strand breaks in T5-2E1 cells (expressing human CYP2E1) and T5-1A2 cells (expressing human CYP1A2) respectively, however no response was observed in T5-neo cells (without CYP450 cDNA transfection). Sulforaphane inhibited both NDMA and IQ-induced DNA strand breakage in a concentration-dependent manner (0.1-10μM).The inhibition of metabolic activation as a basis for the antigenotoxic action of sulforaphane in these systems (bacteria, rodent hepatocytes and human cells) is further supported by the lack of this chemopreventor to influence NaN3 mutagenicity in S. typhimurium and H202-induced DNA strand breakage in T5-neo cells. These findings suggest that inhibition of CYP2E1 and CYP1A by sulforaphane may contribute to its chemoprotective potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research was undertaken to: develop a process for the direct solvent extraction of castor oil seeds. A literature survey confirmed the desirability of establishing such a process with emphasis on the decortication, size, reduction, detoxification-deallergenization, and solvent·extraction operations. A novel process was developed for the dehulling of castor seeds which consists of pressurizing the beans and then suddenly releasing the pressure to vaccum. The degree of dehulling varied according to the pressure applied and the size of the beans. Some of the batches were difficult-to-hull, and this phenomenon was investigated using the scanning electron microscope and by thickness and compressive strength measurements. The other variables studied to lesser degrees included residence time, moisture, content, and temperature.The method was successfully extended to cocoa beans, and (with modifications) to peanuts. The possibility of continuous operation was looked into, and a mechanism was suggested to explain the method works. The work on toxins and allergens included an extensive literature survey on the properties of these substances and the methods developed for their deactivation Part of the work involved setting up an assay method for measuring their concentration in the beans and cake, but technical difficulties prevented the completion of this aspect of the project. An appraisal of the existing deactivation methods was made in the course of searching for new ones. A new method of reducing the size of oilseeds was introduced in this research; it involved freezing the beans in cardice and milling them in a coffee grinder, the method was found to be a quick, efficient, and reliable. An application of the freezing technique was successful in dehulling soybeans and de-skinning peanut kernels. The literature on the solvent extraction, of oilseeds, especially castor, was reviewed: The survey covered processes, equipment, solvents, and mechanism of leaching. three solvents were experimentally investigated: cyclohexane, ethanol, and acetone. Extraction with liquid ammonia and liquid butane was not effective under the conditions studied. Based on the results of the research a process has been suggested for the direct solvent extraction of castor seeds, the various sections of the process have analysed, and the factors affecting the economics of the process were discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer cachexia comprises unintentional and debilitating weight loss associated with certain tumour types. Fat loss in cachexia is mediated by a 43kDa Lipid Mobilising Factor (LMF) sharing homology with endogenous Zinc-α2-Glycoprotein (ZAG). LMF and ZAG induced significant lipolysis in isolated epidydimal adipose tissue. This is attenuated by co-incubation with 10μM of antagonist SR59230A and partially attenuated by 25μM PD098059 (indicating β3-AR and MAPK involvement respectively). LMF/ZAG induced in vitro lipid depletion in differentiated 3T3-L1 adipocytes that seen to comprise a significant increase in lipolysis (p<0.01), with only a modest decrease in lipid synthesis (p=0.09). ZAG significantly increased in vitro protein synthesis (p<0.01) in C2C12 myotubes (without an effect on protein degradation). This increase was activated at transcription and attenuated by co-incubation with 10μM SR59230A. Proteolytic digestion of ZAG and LMF followed by sephadex G50 chromatography yielded active fragments of 6-15kDa, indication the entire molecule was not required for bioactivity. Cachexigenic MAC16 cells demonstrated significant in vitro ZAG expression over non-cachexigenic MAC13 cells (p<0.001). WAT and BAT excised from MAC16 mice of varying weight loss demonstrated increased ZAG expression compared to controls. Dosing of NMRI mice with s/c ZAG failed to reproduce this up-regulation, thus another cachectic factor is responsible. 0.58nM LMF conferred significant protection against hydrogen peroxide, paraquat and bleomycin-induced oxidative stress in the non-cachexigenic MAC13 cell line. This protection was attenuated by 10μM SR59230A indicating a β3-AR mediated effect. In addition, 0.58nM LMF significantly up regulated UCP2 expression (p<0.001), (a mitochondrial protein implicated in the detoxification of ROS) implying this to be the mechanism by which survival was achieved. In vitro, LMF caused significant up-regulation of UCP1 in BAT and UCP2 and 3 in C2C12 myotubes. This increase in uncoupling protein expression further potentiates the negative energy balance and wasting observed in cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metabolism of compounds containing the N-methyl group is discussed with particular consideration being made to the possible role of the product of oxidative metabolism, the N-hydroxymethyl moiety, in the generation of potentially toxic, reactive electrophiles. Particular pathways which are considered are: (i), the production of formaldehyde; (ii), the generation of iminium ions or imines; and (iii), the formation of N-formyl compounds which might act as formylating agents. 4-Chloro-N-(hydroxymethyl)benzamide and 3-(4-chlorophenyl)-1-hydroxy-methyl-1-methylurea (the product of oxidative metabolism of 3-(4-chlorophenyl)-1,1-dimethylurea) are model carbinolamides which do not readily release formaldehyde. The electrophilic properties of these model carbinolamides were investigated: neither reacted with nucleophiles such as cyanide or glutathione under physiological conditions. In contrast, N-(acetoxymethyl)-4-chlorobenzamide yielded the cyanomethylamide with potassium cyanide and S-(4-chlorobenzamidomethyl)glutathione with glutathione. 4-Chloro-N-(hydroxymethyl)benzamide and 3-(4-chlorophenyl)-1,1-dimethylurea were not biotransformed to electrophilic moieties when incubated with mouse hepatic 9000 x g supernatant and Acetyl-CoA or PAPS-generating system. N-(Acetoxymethyl)-4-chlorobenzamide was non-mutagenic to Salmonella typhimurium in the short term bacterial assay; but toxicity to the bacteria was observed. 4-Chloro-N-(hydroxymethyl)benzamide and 3-(4-chlorophenyl)-1,1-dimethylurea showed no mutagenicity or toxicity in the mutagenicity assay including an Aroclor-induced rat hepatic 9000 x g supernatant. Addition of Acetyl-CoA or a PAPS-generating system did not produce a mutagenic response. 4-Chloro-N-formlbenzamide did not act as a formylating agent towards the weak nucleophile aniline. However, 4-chloro-N-formylbenzamide, N-formylbenzamide, 3-(4-chlorophenyl)-1-formyl-1-methylurea and 3-(4-chlorophenyl)-1-formylurea are all metabolised by mouse hepatic mirosomes and post-microsomal supernatant. The results demonstrate the potential for N-hydroxymethyl compounds to generate highly reactive species if these are substrates for conjugation with sulphate (or acetate). The model compounds employed here, apparently do not show any ability to be conjugated themselves, however, other N-hydroxymethyl compounds might be readily conjugated. The formation of N-formyl compounds does not appear to be toxicologically significant, as adjudged on limited experiments performed, but rather represent a detoxification pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Azidoprofen {2-(4-azidophenyl)propionic acid; AZP}, an azido-substituted arylalkanoic acid, was investigated as a model soft drug candidate for a potential topical non-steroidal anti-inflammatory agent (NSAIA). Reversed-phase high performance liquid chromatography (HPLC) methods were developed for the assay of AZP, a series of ester analogues and their· degradation products. 1H-NMR spectroscopy was also employed as an analytical method in selected cases. Reduction of the azido-group to the corresponding amine has been proposed as a potential detoxification mechanism for compounds bearing this substituent. An in vitro assay to measure the susceptibility of azides towards reduction was developed using dithiothreitol as a model reducing agent. The rate of reduction of AZP was found to be base-dependent, hence supporting the postulated mechanism of thiol-mediated reduction via nucleophilic attack by the thiolate anion. Prodrugs may enhance topical bioavailability through the manipulation of physico-chemical properties of the parent drug. A series of ester derivatives of AZP were investigated for their susceptibility to chemical and enzymatic hydrolysis, which regenerates the parent acid. Use of alcoholic cosolvents with differing alkyl functions to that of the ester resulted in transesterification reactions, which were found to be enzyme-mediated. The skin penetration of AZP was assessed using an in vitro hairless mouse skin model, and silastic membrane in some cases. The rate of permeation of AZP was found to be a similar magnitude to that of the well established NSAIA ibuprofen. Penetration rates were dependent on the vehicle pH and drug concentration when solutions were employed. In contrast, flux was independent of pH when suspension formulations were used. Pretreatment of the skin with various enhancer regimes, including oleic acid and azone in propylene glycol, promoted the penetration of AZP. An intense IR absorption due to the azide group serves as a highly diagnostic marker, enabling azido compounds to be detected in the outer layers of the· stratum corneum following their application to skin, using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). This novel application enabled a non-invasive examination of the percutaneous penetration enhancement of a model azido compound in vivo in man, in the presence of the enhancer oleic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lipophilic dihydrofolate reductase (DHFR) inhibitor m-azidopyrimethamine (MZP) was investigated for suitability for development as a topical antipsoriatic agent. The clinical features and treatments for psoriasis were reviewed. High performance liquid chromatography (HPLC) was employed as the main analytical method, with UV spectroscopy being used in some cases. Reduction of the azido-group was proposed as a potential detoxification mechanism for MZP. The rates of reduction of a series of substituted phenyl azide compounds by dithiothreitol were investigated and found to depend on the substitution pattern of the aryl azide molecular, with electron deficient azides exhibiting faster rates of reduction in the system studied. The rates of reduction of MZP and analogous compounds were also studied using this model. The skin penetration of MZP was assessed using an in vitro hairless mouse skin model. The rate of permeation (flux) of MZP across hairless mouse skin was found to be dependent on the quantity of propylene glycol used as cosolvent in the vehicle and the pH. The use of a pretreatment regime of oleic acid in propylene glycol was shown to greatly increase the penetration of MZP through the hairless mouse skin as compared to application without pretreatment, or pretreatment with other penetration enhancers. The metabolism of MZP was studied in in vitro models comprising skin homogenates, SV-K14 human keratinocyte cell cultures and skin commensal bacterial cultures. No conversion of MZP to the corresponding amine was detected in any of the models. The growth inhibitory properties of MZP were investigated in an in vitro SV-K14 human keratinocyte cell culture model and compared with those of other DHFR inhibitors. [14C]-pyrimethamine was shown to be taken up by the SV-K14 keratinocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

4-Hydroxy-2-nonenal (HNE) is one of the most studied products of phospholipid peroxidation, owing to its reactivity and cytotoxicity. It can be formed by several radical-dependent oxidative routes involving the formation of hydroperoxides, alkoxyl radicals, epoxides, and fatty acyl cross-linking reactions. Cleavage of the oxidized fatty acyl chain results in formation of HNE from the methyl end, and 9-oxo-nonanoic acid from the carboxylate or esterified end of the chain, although many other products are also possible. HNE can be metabolized in tissues by a variety of pathways, leading to detoxification and excretion. HNE-adducts to proteins have been detected in inflammatory situations such as atherosclerotic lesions using polyclonal and monoclonal antibodies, which have also been applied in ELISAs and western blotting. However, in order to identify the proteins modified and the exact sites and nature of the modifications, mass spectrometry approaches are required. Combinations of enrichment strategies with targetted mass spectrometry routines such as neutral loss scanning are now facilitating detection of HNE-modified proteins in complex biological samples. This is important for characterizing the interactions of HNE with redox sensitive cell signalling proteins and understanding how it may modulate their activities either physiologically or in disease. © 2013 The Author.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method for debromination of organics by a reductive medium like polypropylene is investigated. The reaction is carried out in inert atmosphere to avoid rapid oxidation of the polymer. Through this detoxification procedure, hydrogen bromide and small brominated alkanes are formed. Experiments in closed ampoules are carried out with tetrabromobisphenol A, dibromophenol, pentabromodiphenyl ether, dichlorophenol and an oil formed by pyrolysis of printed circuit boards in the Haloclean® process. The reaction is examined under isothermal conditions in a temperature range between 300 and 400°C and a residence time between 10 and 30 min. Optimal conditions were found at 350°C and at a residence time of 20 min. As chlorinated phenols are not destroyed under these conditions, the process may be a valuable procedure to gain hydrogen bromide out of mixtures of halogenated feed materials. Also, under atmospheric pressure, a reaction between polypropylene and brominated compounds takes place as could be proved by thermogravimetric analysis. Bromobenzene has an accelerating effect on the rate of weight loss of the polymer, but at higher concentrations, it can also be slowed down. © 2003 Elsevier Ltd. All rights reserved.