17 resultados para corrosion

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increase use of de-icing salts on roads for safety, the need for improved corrosion resistance of the traditional galvanized automobile bodies has never been greater. In the present work, Zn alloy coatings (Zn-Ni and Zn-Co) were studied as an alternative to pure Zn coatings. The production of these deposits involved formulation of various acidic (pH of about 5.5) chloride based solutions. These showed anomalous deposition, that is, alloys were deposited much more easily than expected from the noble behaviour of Ni and Co metals. Coating compositions ranging from 0 to about 37% Ni and 20% Co were obtained. The chemical composition of the coatings depended very much on the electrolytes nature and operating conditions. The Ni content of deposits increased with increase in Ni bath concentration, temperature, pH and solution agitation but decreased considerably with increase in current density. The throwing power of the Zn-Ni solution deteriorated as Ni metal bath concentration increased. The Co content of deposits also increased with increase in Co bath concentration and temperature, and decreased with increase in current density. However, the addition of commercial organic additives to Zn-Co plating solutions suppressed considerably the amount of Co in the coatings. The Co content of deposits plated from Zincrolyte solution was found to be more sensitive to variation in current density than in the case of deposits plated from the alkaline Canning solution. The chromating procedures were carried out using laboratory formulated solution and commercially available ones. The deposit surface state was of great significance in influencing the formulation of conversion coatings. Bright and smooth deposits acquired an iridescent colour when treated with the laboratory formulated solution. However, the dull deposits acquired a brownish appearance. The correlation between the electrochemical test results and the neutral salt spray in marine environment was good. Non-chromated Zn-Ni coatings containing about 11-14% Ni increased in corrosion resistance compared to pure Zn. Non-chromated Zn-Co deposits of composition 4-8% were required to show a significant improvement in corrosion resistance Corrosion resistance was improved considerably by conversion coating. However, the type of conversion coating was very important. Samples treated in a laboratory solution performed badly compared to those treated in commercial solutions. Zn alloy coatings were superior to pure Zn, the Schloetter sample (13.8% Ni) had the lowest corrosion rate, followed by the Canning sample (1.0% Co) and then Zincrolyte (0.3% Co).Neither the chromium content of the conversion films nor the chromium state was found to have an effect on corrosion performance of the coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents results of experiments designed to study the effect of applying electrochemical chloride extraction (ECE) to a range of different hardened cement pastes. Rectangular prism specimens of hydrated cement paste containing sodium chloride at different concentrations were subjected to electrolysis between the embedded steel cathodes and external anodes of activated titanium mesh. The cathodic current density used was in the range of 1 to 5 A/m2 with treatment periods of 4 to 12 weeks. After treatment, the specimens were cut into sections which were subjected to pore-solution expression and analysis in order to determine changes in the distribution of free and total ionic species. The effect of the ECE treatment on the physical and microstructural properties of the cements was studied by using microhardness and MIP techniques. XRD was employed to look at the possibility of ettringite redistribution as a result of the accumulation of soluble sulphate ions in the cement matrix near the cathode during ECE. Remigration of chloride which remains after the ECE treatment and distribution of other ions were studied by analysing specimens which had been stored for several months, after undergoing ECE treatment. The potentials of the steel cathodes were also monitored over the period to detect any changes in their corrosion state. The main findings of this research were as follows: 1, ECE, as applied in this investigation, was capable of removing both free and bound chloride. The removal process occurred relatively quickly and an equilibrium between free and bound chlorides in the specimens was maintained throughout. At the same time, alkali concentrations in the pore solution near the steel cathode increased. The soluble sulphate ionic concentration near the cathode also increased due to the local increase in the pH of the pore solution. 2, ECE caused some changes in physical and microstructural of the cement matrix. However these changes were minimal and in the case of microhardness, the results were highly scattered. Ettringite in the bulk material well away from the cathode was found not to increase significantly with the increase in charge passed.3, Remigration of chloride and other ionic species occurred slowly after cessation of ECE with a resultant gradual increase in the Cl-/OH- ratio around the steel.4, The removal of chloride from blended cements was slower than that from OPC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four corrosion inhibitors namely sodium nitrite, sodium monofluorophosphate, ethanolamine and an alkanolamine-based mixture were studied by immersing mild steel bars for 42 days in model electrolytes of varied pH and chloride concentration which were intended to simulate the pore solution phase present within carbonated and/or chloride-contaminated concrete. Site trials were carried out on sodium monofluorophosphate and the alkanolamine-based inhibitor to study their depth of penetration into concrete. The influence of various carbonating atmospheres on the pore solution chemistry and microstructure of hydrated cement paste was investigated. Physical realkalisation of carbonated cement paste and a calcium nitrite-based corrosion rehabilitation system for chloride-contaminated cement paste were investigated by monitoring ionic transport within the pore solution phase of laboratory specimens. The main findings were as follows: 1,Sodium nitrite, sodium monofluorophosphate, ethanolamine and the alkanolamine-based mixture all behaved as passivating anodic inhibitors of steel corrosion in air-saturated aqueous solutions of varied pH and chloride concentration. 2,Sodium monofluorophosphate failed to penetrate significantly into partially carbonated site concrete when applied as recommended by the supplier. Phosphate and fluoride penetrated 5mm into partially carbonated site concrete treated with sodium monofluorophosphate. 3,The ethanolamine component of the alkanolamine-based inhibitor was found to have penetrated significant depths into partially carbonated site concrete. 4,Carbonating hydrated cement paste over saturated solutions of sodium nitrite resulted in significant concentrations of nitrite in the pore solution of the carbonated paste. Saturated solutions of sodium chloride, ammonium nitrate, magnesium nitrate and sodium dichromate were investigated and identified as alternatives for controlling the relative humidity of the carbonating environment. 5,Hardened carbonated cement paste can by physically realkalised to a limited extent due to the diffusion of hydroxyl ions under saturated conditions. A substantial proportion of the hydroxyl ions that diffused into the carbonated cement paste however, became bound into the cement matrix. Hydroxyl ion concentrations remained below 5mmol/l within the pore solution of the realkalised cement paste. 6, Nitrite ions penetrated significant distances by diffusion within the pore solution of saturated uncarbonated hydrated cement paste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation has been undertaken to determine the major factors influencing the corrosion resistance of duplex-zinc coatings on steel substrates.Premature failure of these systems has been attributed to the presence of defects such as craters and pinholes in the polymer film and debonding of the polymer film from the zinc substrate.Defects found on commercially produced samples have been carefully characterised using metallographic and scanning electron microscopy techniques. The influence of zinc substrate surface roughness, polymer film thickness and degassing of conversion coatings films on the incidence of defects has been determined.Pretreatments of the chromate, chromate-phosphate, non chromate, and alkali-oxide types were applied and the conversion coatings produced characterised with respect to their nature and composition. The effect of degassing on the properties of the films was also investigated. Electrochemical investigations were carried out to determine the effect of the presence of the eta or zeta phase as the outermost layer of the galvanized coating.Flow characteristics of polyester on zinc electroplated hot-dip continuous and batch galvanized and zinc sprayed samples were investigated using hot-stage microscopy. The effects of different pretreatments and degassing after conversion coating formation on flow characteristics were determined.Duplex coatings were subjected to the acetic acid salt spray test. The effect on adhesion was determined using an indentation debonding test and the results compared with those obtained using cross-cut/peel and pull-off tests. The locus of failure was determined using scanning electron microscopy and X-ray photoelectron spectroscopy techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction in the useful-service life of reinforced concrete construction in the Arabian Gulf is attributed to reinforcement corrosion. While this phenomenon is primarily related to chloride ions, the concomitant pressure of sulfate salts may accelerate the deterioration process. Another factor which might influence reinforcement corrosion is the elevated ambient temperature. While few studies have been conducted to evaluate the individual effect of sulfate contamination and temperature on chloride binding and reinforcement corrosion, the synergistic effect of these factors on concrete durability, viz.-a-viz., reinforcement corrosion, needs to be evaluated. Further, the environmental conditions of the Arabian Gulf are also conducive for accelerated carbonation. However, no data are available on the concomitant effect of chloride-sulfate contamination and elevated temperature on the carbonation behaviour of plain and blended cements.This study was conducted to evaluate the conjoint effect of chloride-sulfate contamination and temperature on the pore solution chemistry and reinforcement corrosion. The effect of chloride-sulfate contamination and elevated temperature on carbonation in plain and blended cements was also investigated. Pore solution extraction and analysis, X-ray diffraction, differential thermal analysis, scanning electron microscopy, DC linear polarization resistance and AC impedance spectroscopy techniques were utilized to study the effect of experimental parameters on chloride binding, reinforcement corrosion and carbonation.The results indicated that the concomitant presence of chloride and sulfate salts and temperature significantly influences the durability performance of concrete by: (i) decreasing the chloride binding, (ii) increasing reinforcement corrosion, and (iii) accelerating the carbonation process. To avoid such deterioration, it is advisable to minimize both chloride and sulfate contamination contributed by the mixture ingredients. Due to the known harmful role of sulfate ions in decreasing the chloride binding and increasing reinforcement corrosion, limits on allowable sulfate contamination in concrete should also be established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium formate, potassium acetate and a mixture of calcium and magnesium acetate (CMA) have all been identified as effective de-icing agents. In this project an attempt has been made to elucidate potentially deleterious effects of these substances on the durability of reinforced concrete. Aspects involving the corrosion behaviour of embedded steel along with the chemical and physical degradation of the cementitious matrix were studied. Ionic diffusion characteristics of deicer/pore solution systems in hardened cement paste were also studied since rates of ingress of deleterious agents into cement paste are commonly diffusion-controlled. It was found that all the compounds tested were generally non-corrosive to embedded steel, however, in a small number of cases potassium acetate did cause corrosion. Potassium acetate was also found to cause cracking in concrete and cement paste samples. CMA appeared to degrade hydrated cement paste although this was apparently less of a problem when commercial grade CMA was used in place of the reagent grade chemical. This was thought to be due to the insoluble material present in the commercial formulation forming a physical barrier between the concrete and the de-icing solution. With the test regimes used sodium formate was not seen to have any deleterious effect on the integrity of reinforced concrete. As a means of restoring the corrosion protective character of chloride-contaminated concrete the process of electrochemical chloride removal has been previously developed. Potential side-effects of this method and the effect of external electrolyte composition on chloride removal efficiency were investigated. It was seen that the composition of the external electrolyte has a significant effect on the amount of chloride removed. It was also found that, due to alterations to the composition of the C3A hydration reaction products, it was possible to remove bound chloride as well as that in the pore solution. The use of an external electrolyte containing lithium ions was also tried as a means of preventing cathodically-induced alkali-silica reaction in concretes containing potentially reactive aggregates. The results obtained were inconclusive and further practical development of this approach is needed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of several chemical and electrochemical factors which affect the behaviour of embedded steel in cement pastes and concrete has been made. The effects of internal and external sources of chloride ions on the pore solution chemistry of Portland cement pastes, with and without additions of anodic corrosion inhibitors, have been studied using a pore solution expression device which has enabled samples of pore solution to be expressed from hardened cement pastes and analysed for various ionic species. Samples of pure alite and tricalcium aluminate have been prepared and characterised with respect to morphology, free lime content and fineness. Kinetics of diffusion of chloride ions in hardened pastes of alite and alite blended with tricalcium aluminate have been investigated and an activation energy obtained for the diffusion process in alite. The pore structures of the hardened pastes and the chloride ion binding capacity of alite have also been determined. Concrete cylinders containing embedded steel with four different surface conditions were exposed to various environments. The electrochemical behaviour of the steel was monitored during the period of exposure by means of rest potential measurements and the steel corrosion products analysed before and after being embedded. An examination was made of the nature of the interfacial zones produced between the embedded steel and cement. Rest potential measurements were monitored for steel embedded in alite paste in the presence of chloride ions and cement paste containing various levels of inhibitors in combination with chloride ions. In the latter case the results were supported by polarisation resistance determinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatigue crack growth in high strength aluminium alloy 7150 commercial plate material has been studied in both laboratory air and acidified aqueous salt solution. The aggressive aqueous environment enhanced fatigue crack growth rates by up to an order in magnitude compared to laboratory air. The enhancement in fatigue crack growth rate was accompanied by evidence of embrittlement in the crack path, involving both brittle intergranular and transgranular failure modes. Both the enhancement of fatigue crack growth rates and the extent of intergranular growth modes are dependent on cyclic frequency which, along with the absence of a similar frequency effect in a spray-formed version of the material with a significantly different grain structure, supports a mechanism of grain boundary hydrogen diffusion for intergranular corrosion fatigue crack growth. The convergence of corrosion fatigue crack growth rates at high ΔK in both spray-formed and conventional plate materials coincides with the operation of identical transgranular corrosion fatigue modes dependent on strain-controlled hydrogen diffusion ahead of the crack tip. © 1997 Acta Metallurgica Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent search for new sources of hydrocarbons has led to production from very severe environments which can contain considerable amounts of carbon dioxide, hydrogen sulphide, and chloride ions, combined with temperatures which can exceed 100°C. Oil and gas production from such wells requires highly corrosion-resistant materials. The traditional solution of using carbon steel with additional protection is generally inadequate in these very-aggressive environments. Duplex stainless steels (DSS) are attractive candidates because of their high strength, good general corrosion resistance, excellent resistance to chloride-induced stress corrosion cracking, and good weldability. Although duplex stainless steels have a very good reputation in both subsea and topsides pipework, it is recognized that the tolerance of these materials to variations in microstructure and chemical composition are still not fully understood. The object of this paper is to review the corrosion behaviour of duplex stainless steels in the petrochemical industry, with particular emphasis on microstructures and the effect of changes in chemical composition.